Trustworthy Online Controlled Experiments
A Practical Guide to A/B Testing

Getting numbers is easy; getting numbers you can trust is hard. This practical guide by
experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to
accelerate innovation using trustworthy online controlled experiments, or A/B tests.
Based on practical experiences at companies that each runs more than 20,000 controlled
experiments a year, the authors share examples, pitfalls, and advice for students and
industry professionals getting started with experiments, plus deeper dives into advanced
topics for experienced practitioners who want to improve the way they and their
organizations make data-driven decisions.

Learn how to:

e Use the scientific method to evaluate hypotheses using controlled experiments

® Define key metrics and ideally an Overall Evaluation Criterion

e Test for trustworthiness of the results and alert experimenters to violated
assumptions

o Interpret and iterate quickly based on the results

e Implement guardrails to protect key business goals

e Build a scalable platform that lowers the marginal cost of experiments close to zero

e Avoid pitfalls such as carryover effects, Twyman’s law, Simpson’s paradox, and
network interactions

e Understand how statistical issues play out in practice, including common violations
of assumptions

RON KOHAVI is a vice president and technical fellow at Airbnb. This book was written
while he was a technical fellow and corporate vice president at Microsoft. He was
previously director of data mining and personalization at Amazon. He received his PhD
in Computer Science from Stanford University. His papers have more than 40,000
citations and three of them are in the top 1,000 most-cited papers in Computer Science.

DIANE TANG is a Google Fellow, with expertise in large-scale data analysis and
infrastructure, online controlled experiments, and ads systems. She has an AB from
Harvard and an MS/PhD from Stanford, with patents and publications in mobile
networking, information visualization, experiment methodology, data infrastructure,
data mining, and large data.

Y A XU heads Data Science and Experimentation at LinkedIn. She has published several
papers on experimentation and is a frequent speaker at top-tier conferences and
universities. She previously worked at Microsoft and received her PhD in Statistics
from Stanford University.
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“At the core of the Lean Methodology is the scientific method: Creating hypotheses,

running experiments, gathering data, extracting insight and validation or

modification of the hypothesis. A/B testing is the gold standard of creating
verifiable and repeatable experiments, and this book is its definitive text.”

— Steve Blank, Adjunct professor at Stanford University, father of modern

entrepreneurship, author of The Startup Owner’s Manual and

The Four Steps to the Epiphany

“This book is a great resource for executives, leaders, researchers or engineers
looking to use online controlled experiments to optimize product features, project
efficiency or revenue. I know firsthand the impact that Kohavi’s work had on Bing
and Microsoft, and I’'m excited that these learnings can now reach a wider audience.”

— Harry Shum, EVP, Microsoft Artificial Intelligence and Research Group

“A great book that is both rigorous and accessible. Readers will learn how to bring

trustworthy controlled experiments, which have revolutionized internet product
development, to their organizations”

— Adam D’Angelo, Co-founder and CEO of Quora and

former CTO of Facebook

“This book is a great overview of how several companies use online experimentation
and A/B testing to improve their products. Kohavi, Tang and Xu have a wealth of
experience and excellent advice to convey, so the book has lots of practical real world
examples and lessons learned over many years of the application of these techniques
at scale.”

— Jeff Dean, Google Senior Fellow and SVP Google Research

“Do you want your organization to make consistently better decisions? This is the new
bible of how to get from data to decisions in the digital age. Reading this book is like
sitting in meetings inside Amazon, Google, LinkedIn, Microsoft. The authors expose
for the first time the way the world’s most successful companies make decisions.
Beyond the admonitions and anecdotes of normal business books, this book shows
what to do and how to do it well. It’s the how-to manual for decision-making in the
digital world, with dedicated sections for business leaders, engineers, and data analysts.”

— Scott Cook, Intuit Co-founder & Chairman of the Executive Committee

“Online controlled experiments are powerful tools. Understanding how they work,
what their strengths are, and how they can be optimized can illuminate both
specialists and a wider audience. This book is the rare combination of technically

authoritative, enjoyable to read, and dealing with highly important matters”
— John P.A. Ioannidis, Professor of Medicine, Health Research and Policy,
Biomedical Data Science, and Statistics at Stanford University

“Which online option will be better? We frequently need to make such choices, and

frequently err. To determine what will actually work better, we need rigorous

controlled experiments, aka A/B testing. This excellent and lively book by experts

from Microsoft, Google, and LinkedIn presents the theory and best practices of A/B
testing. A must read for anyone who does anything online!”

— Gregory Piatetsky-Shapiro, Ph.D., president of KDnuggets,

co-founder of SIGKDD, and LinkedIn Top Voice on

Data Science & Analytics.
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“Ron Kohavi, Diane Tang and Ya Xu are the world’s top experts on online

experiments. I’ve been using their work for years and I'm delighted they have

now teamed up to write the definitive guide. I recommend this book to all my
students and everyone involved in online products and services.”

— Erik Brynjolfsson, Professor at MIT and Co-Author of

The Second Machine Age

“A modern software-supported business cannot compete successfully without online
controlled experimentation. Written by three of the most experienced leaders in the
field, this book presents the fundamental principles, illustrates them with compelling
examples, and digs deeper to present a wealth of practical advice. It’s a “must read”!
— Foster Provost, Professor at NYU Stern School of Business & co-author of the
best-selling Data Science for Business

“In the past two decades the technology industry has learned what scientists have
known for centuries: that controlled experiments are among the best tools to
understand complex phenomena and to solve very challenging problems. The
ability to design controlled experiments, run them at scale, and interpret their
results is the foundation of how modern high tech businesses operate. Between
them the authors have designed and implemented several of the world’s most
powerful experimentation platforms. This book is a great opportunity to learn
from their experiences about how to use these tools and techniques.”

— Kevin Scott, EVP and CTO of Microsoft

“Online experiments have fueled the success of Amazon, Microsoft, LinkedIn and
other leading digital companies. This practical book gives the reader rare access to
decades of experimentation experience at these companies and should be on the
bookshelf of every data scientist, software engineer and product manager.”
— Stefan Thomke, William Barclay Harding Professor, Harvard Business School,
Author of Experimentation Works: The Surprising Power of Business Experiments

“The secret sauce for a successful online business is experimentation. But it is a secret

no longer. Here three masters of the art describe the ABCs of A/B testing so that you
too can continuously improve your online services.”

— Hal Varian, Chief Economist, Google, and author of

Intermediate Microeconomics: A Modern Approach

“Experiments are the best tool for online products and services. This book is full of
practical knowledge derived from years of successful testing at Microsoft Google
and LinkedIn. Insights and best practices are explained with real examples and
pitfalls, their markers and solutions identified. I strongly recommend this book!”

— Preston McAfee, former Chief Economist and VP of Microsoft

“Experimentation is the future of digital strategy and ‘Trustworthy Experiments’ will
be its Bible. Kohavi, Tang and Xu are three of the most noteworthy experts on
experimentation working today and their book delivers a truly practical roadmap
for digital experimentation that is useful right out of the box. The revealing case
studies they conducted over many decades at Microsoft, Amazon, Google and
LinkedIn are organized into easy to understand practical lessens with tremendous
depth and clarity. It should be required reading for any manager of a digital business.”
— Sinan Aral, David Austin Professor of Management,

MIT and author of The Hype Machine
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“Indispensable for any serious experimentation practitioner, this book is highly
practical and goes in-depth like I've never seen before. It’s so useful it feels like
you get a superpower. From statistical nuances to evaluating outcomes to measuring
long term impact, this book has got you covered. Must-read.”

— Peep Laja, top conversion rate expert, Founder and Principal of CXL

“Online experimentation was critical to changing the culture at Microsoft. When
Satya talks about “Growth Mindset,” experimentation is the best way to try new
ideas and learn from them. Learning to quickly iterate controlled experiments drove
Bing to profitability, and rapidly spread across Microsoft through Office, Windows,
and Azure.”

— Eric Boyd, Corporate VP, Al Platform, Microsoft

“As an entrepreneur, scientist, and executive I’ve learned (the hard way) that an

ounce of data is worth a pound of my intuition. But how to get good data? This book

compiles decades of experience at Amazon, Google, LinkedIn, and Microsoft into
an accessible, well-organized guide. It is the bible of online experiments.”

— Oren Etzioni, CEO of Allen Institute of Al and

Professor of Computer Science at University of Washington

“Internet companies have taken experimentation to an unprecedented scale, pace,
and sophistication. These authors have played key roles in these developments and

readers are fortunate to be able to learn from their combined experiences.”
— Dean Eckles, KDD Career Development Professor in Communications and
Technology at MIT and former scientist at Facebook

“A wonderfully rich resource for a critical but under-appreciated area. Real case

studies in every chapter show the inner workings and learnings of successful

businesses. The focus on developing and optimizing an “Overall Evaluation
Criterion” (OEC) is a particularly important lesson.”

— Jeremy Howard, Singularity University, founder of fast.ai,

and former president and chief scientist of Kaggle

“There are many guides to A/B Testing, but few with the pedigree of Trustworthy
Online Controlled Experiments. I've been following Ronny Kohavi for eighteen
years and find his advice to be steeped in practice, honed by experience, and
tempered by doing laboratory work in real world environments. When you add
Diane Tang, and Ya Xu to the mix, the breadth of comprehension is unparalleled.
I challenge you to compare this tome to any other - in a controlled manner, of
course.”
— Jim Sterne, Founder of Marketing Analytics Summit and
Director Emeritus of the Digital Analytics Association

“An extremely useful how-to book for running online experiments that combines

analytical sophistication, clear exposition and the hard-won lessons of practical
experience.”

— Jim Manzi, Founder of Foundry.ai, Founder and former CEO and

Chairman of Applied Predictive Technologies, and author of Uncontrolled:

The Surprising Payoff of Trial-and-Error for Business, Politics, and Society
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“Experimental design advances each time it is applied to a new domain: agriculture,
chemistry, medicine and now online electronic commerce. This book by three top
experts is rich in practical advice and examples covering both how and why to
experiment online and not get fooled. Experiments can be expensive; not knowing
what works can cost even more.”

— Art Owen Professor of Statistics, Stanford University

“This is a must read book for business executives and operating managers. Just as
operations, finance, accounting and strategy form the basic building blocks for
business, today in the age of Al, understanding and executing online controlled
experiments will be a required knowledge set. Kohavi, Tang and Xu have laid out
the essentials of this new and important knowledge domain that is practically
accessible.”

— Karim R. Lakhani, Professor and Director of Laboratory for

Innovation Science at Harvard, Board Member, Mozilla Corp.

“Serious ‘data-driven’ organizations understand that analytics aren’t enough; they

must commit to experiment. Remarkably accessible and accessibly remarkable, this

book is a manual and manifesto for high-impact experimental design. I found its

pragmatism inspirational. Most importantly, it clarifies how culture rivals technical
competence as a critical success factor.”

— Michael Schrage, research fellow at MIT’s Initiative on the

Digital Economy and author of The Innovator’s Hypothesis:

How Cheap Experiments Are Worth More than Good Ideas

“This important book on experimentation distills the wisdom of three distinguished

leaders from some of the world’s biggest technology companies. If you are a software

engineer, data scientist, or product manager trying to implement a data-driven culture
within your organization, this is an excellent and practical book for you.”

— Daniel Tunkelang, Chief Scientist at Endeca and former Director of

Data Science and Engineering at LinkedIn

“With every industry becoming digitized and data-driven, conducting and benefiting
from controlled online experiments becomes a required skill. Kohavi, Tang and Yu
provide a complete and well-researched guide that will become necessary reading

for data practitioners and executives alike.”
— Evangelos Simoudis, Co-founder and Managing Director Synapse Partners;
author of The Big Data Opportunity in Our Driverless Future

“The authors offer over 10 years of hard-fought lessons in experimentation, in the
most strategic book for the discipline yet”
— Colin McFarland, Director Experimentation Platform at Netflix

“The practical guide to A/B testing distills the experiences from three of the top
minds in experimentation practice into easy and digestible chunks of valuable and
practical concepts. Each chapter walks you through some of the most important
considerations when running experiments - from choosing the right metric to the
benefits of institutional memory. If you are looking for an experimentation coach
that balances science and practicality, then this book is for you.”

— Dylan Lewis, Experimentation Leader, Intuit
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“The only thing worse than no experiment is a misleading one, because it gives you

false confidence! This book details the technical aspects of testing based on insights

from some of the world’s largest testing programs. If you’re involved in online

experimentation in any capacity, read it now to avoid mistakes and gain confidence
in your results.”

- Chris Goward, Author of You Should Test That!,

Founder and CEO of Widerfunnel

“This is a phenomenal book. The authors draw on a wealth of experience and have
produced a readable reference that is somehow both comprehensive and detailed at
the same time. Highly recommended reading for anyone who wants to run serious
digital experiments.”

- Pete Koomen, Co-founder, Optimizely

“The authors are pioneers of online experimentation. The platforms they’ve built
and the experiments they’ve enabled have transformed some of the largest internet
brands. Their research and talks have inspired teams across the industry to adopt
experimentation. This book is the authoritative yet practical text that the industry has
been waiting for.”

— Adil Aijaz, Co-founder and CEO, Split Software
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Trustworthy Online Controlled Experiments
A Practical Guide to A/B Testing

Getting numbers is easy; getting numbers you can trust is hard. This practical guide by
experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to
accelerate innovation using trustworthy online controlled experiments, or A/B tests.
Based on practical experiences at companies that each runs more than 20,000 controlled
experiments a year, the authors share examples, pitfalls, and advice for students and
industry professionals getting started with experiments, plus deeper dives into advanced
topics for experienced practitioners who want to improve the way they and their
organizations make data-driven decisions.

Learn how to:

e Use the scientific method to evaluate hypotheses using controlled experiments

® Define key metrics and ideally an Overall Evaluation Criterion

e Test for trustworthiness of the results and alert experimenters to violated
assumptions

o Interpret and iterate quickly based on the results

e Implement guardrails to protect key business goals

e Build a scalable platform that lowers the marginal cost of experiments close to zero

e Avoid pitfalls such as carryover effects, Twyman’s law, Simpson’s paradox, and
network interactions

e Understand how statistical issues play out in practice, including common violations
of assumptions

RON KOHAVI is a vice president and technical fellow at Airbnb. This book was written
while he was a technical fellow and corporate vice president at Microsoft. He was
previously director of data mining and personalization at Amazon. He received his PhD
in Computer Science from Stanford University. His papers have more than 40,000
citations and three of them are in the top 1,000 most-cited papers in Computer Science.

DIANE TANG is a Google Fellow, with expertise in large-scale data analysis and
infrastructure, online controlled experiments, and ads systems. She has an AB from
Harvard and an MS/PhD from Stanford, with patents and publications in mobile
networking, information visualization, experiment methodology, data infrastructure,
data mining, and large data.

Y A XU heads Data Science and Experimentation at LinkedIn. She has published several
papers on experimentation and is a frequent speaker at top-tier conferences and
universities. She previously worked at Microsoft and received her PhD in Statistics
from Stanford University.
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“At the core of the Lean Methodology is the scientific method: Creating hypotheses,

running experiments, gathering data, extracting insight and validation or

modification of the hypothesis. A/B testing is the gold standard of creating
verifiable and repeatable experiments, and this book is its definitive text.”

— Steve Blank, Adjunct professor at Stanford University, father of modern

entrepreneurship, author of The Startup Owner’s Manual and

The Four Steps to the Epiphany

“This book is a great resource for executives, leaders, researchers or engineers
looking to use online controlled experiments to optimize product features, project
efficiency or revenue. I know firsthand the impact that Kohavi’s work had on Bing
and Microsoft, and I’'m excited that these learnings can now reach a wider audience.”

— Harry Shum, EVP, Microsoft Artificial Intelligence and Research Group

“A great book that is both rigorous and accessible. Readers will learn how to bring

trustworthy controlled experiments, which have revolutionized internet product
development, to their organizations”

— Adam D’Angelo, Co-founder and CEO of Quora and

former CTO of Facebook

“This book is a great overview of how several companies use online experimentation
and A/B testing to improve their products. Kohavi, Tang and Xu have a wealth of
experience and excellent advice to convey, so the book has lots of practical real world
examples and lessons learned over many years of the application of these techniques
at scale.”

— Jeff Dean, Google Senior Fellow and SVP Google Research

“Do you want your organization to make consistently better decisions? This is the new
bible of how to get from data to decisions in the digital age. Reading this book is like
sitting in meetings inside Amazon, Google, LinkedIn, Microsoft. The authors expose
for the first time the way the world’s most successful companies make decisions.
Beyond the admonitions and anecdotes of normal business books, this book shows
what to do and how to do it well. It’s the how-to manual for decision-making in the
digital world, with dedicated sections for business leaders, engineers, and data analysts.”

— Scott Cook, Intuit Co-founder & Chairman of the Executive Committee

“Online controlled experiments are powerful tools. Understanding how they work,
what their strengths are, and how they can be optimized can illuminate both
specialists and a wider audience. This book is the rare combination of technically

authoritative, enjoyable to read, and dealing with highly important matters”
— John P.A. Ioannidis, Professor of Medicine, Health Research and Policy,
Biomedical Data Science, and Statistics at Stanford University

“Which online option will be better? We frequently need to make such choices, and

frequently err. To determine what will actually work better, we need rigorous

controlled experiments, aka A/B testing. This excellent and lively book by experts

from Microsoft, Google, and LinkedIn presents the theory and best practices of A/B
testing. A must read for anyone who does anything online!”

— Gregory Piatetsky-Shapiro, Ph.D., president of KDnuggets,

co-founder of SIGKDD, and LinkedIn Top Voice on

Data Science & Analytics.
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“Ron Kohavi, Diane Tang and Ya Xu are the world’s top experts on online

experiments. I’ve been using their work for years and I'm delighted they have

now teamed up to write the definitive guide. I recommend this book to all my
students and everyone involved in online products and services.”

— Erik Brynjolfsson, Professor at MIT and Co-Author of

The Second Machine Age

“A modern software-supported business cannot compete successfully without online
controlled experimentation. Written by three of the most experienced leaders in the
field, this book presents the fundamental principles, illustrates them with compelling
examples, and digs deeper to present a wealth of practical advice. It’s a “must read”!
— Foster Provost, Professor at NYU Stern School of Business & co-author of the
best-selling Data Science for Business

“In the past two decades the technology industry has learned what scientists have
known for centuries: that controlled experiments are among the best tools to
understand complex phenomena and to solve very challenging problems. The
ability to design controlled experiments, run them at scale, and interpret their
results is the foundation of how modern high tech businesses operate. Between
them the authors have designed and implemented several of the world’s most
powerful experimentation platforms. This book is a great opportunity to learn
from their experiences about how to use these tools and techniques.”

— Kevin Scott, EVP and CTO of Microsoft

“Online experiments have fueled the success of Amazon, Microsoft, LinkedIn and
other leading digital companies. This practical book gives the reader rare access to
decades of experimentation experience at these companies and should be on the
bookshelf of every data scientist, software engineer and product manager.”
— Stefan Thomke, William Barclay Harding Professor, Harvard Business School,
Author of Experimentation Works: The Surprising Power of Business Experiments

“The secret sauce for a successful online business is experimentation. But it is a secret

no longer. Here three masters of the art describe the ABCs of A/B testing so that you
too can continuously improve your online services.”

— Hal Varian, Chief Economist, Google, and author of

Intermediate Microeconomics: A Modern Approach

“Experiments are the best tool for online products and services. This book is full of
practical knowledge derived from years of successful testing at Microsoft Google
and LinkedIn. Insights and best practices are explained with real examples and
pitfalls, their markers and solutions identified. I strongly recommend this book!”

— Preston McAfee, former Chief Economist and VP of Microsoft

“Experimentation is the future of digital strategy and ‘Trustworthy Experiments’ will
be its Bible. Kohavi, Tang and Xu are three of the most noteworthy experts on
experimentation working today and their book delivers a truly practical roadmap
for digital experimentation that is useful right out of the box. The revealing case
studies they conducted over many decades at Microsoft, Amazon, Google and
LinkedIn are organized into easy to understand practical lessens with tremendous
depth and clarity. It should be required reading for any manager of a digital business.”
— Sinan Aral, David Austin Professor of Management,

MIT and author of The Hype Machine
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“Indispensable for any serious experimentation practitioner, this book is highly
practical and goes in-depth like I've never seen before. It’s so useful it feels like
you get a superpower. From statistical nuances to evaluating outcomes to measuring
long term impact, this book has got you covered. Must-read.”

— Peep Laja, top conversion rate expert, Founder and Principal of CXL

“Online experimentation was critical to changing the culture at Microsoft. When
Satya talks about “Growth Mindset,” experimentation is the best way to try new
ideas and learn from them. Learning to quickly iterate controlled experiments drove
Bing to profitability, and rapidly spread across Microsoft through Office, Windows,
and Azure.”

— Eric Boyd, Corporate VP, Al Platform, Microsoft

“As an entrepreneur, scientist, and executive I’ve learned (the hard way) that an

ounce of data is worth a pound of my intuition. But how to get good data? This book

compiles decades of experience at Amazon, Google, LinkedIn, and Microsoft into
an accessible, well-organized guide. It is the bible of online experiments.”

— Oren Etzioni, CEO of Allen Institute of Al and

Professor of Computer Science at University of Washington

“Internet companies have taken experimentation to an unprecedented scale, pace,
and sophistication. These authors have played key roles in these developments and

readers are fortunate to be able to learn from their combined experiences.”
— Dean Eckles, KDD Career Development Professor in Communications and
Technology at MIT and former scientist at Facebook

“A wonderfully rich resource for a critical but under-appreciated area. Real case

studies in every chapter show the inner workings and learnings of successful

businesses. The focus on developing and optimizing an “Overall Evaluation
Criterion” (OEC) is a particularly important lesson.”

— Jeremy Howard, Singularity University, founder of fast.ai,

and former president and chief scientist of Kaggle

“There are many guides to A/B Testing, but few with the pedigree of Trustworthy
Online Controlled Experiments. I've been following Ronny Kohavi for eighteen
years and find his advice to be steeped in practice, honed by experience, and
tempered by doing laboratory work in real world environments. When you add
Diane Tang, and Ya Xu to the mix, the breadth of comprehension is unparalleled.
I challenge you to compare this tome to any other - in a controlled manner, of
course.”
— Jim Sterne, Founder of Marketing Analytics Summit and
Director Emeritus of the Digital Analytics Association

“An extremely useful how-to book for running online experiments that combines

analytical sophistication, clear exposition and the hard-won lessons of practical
experience.”

— Jim Manzi, Founder of Foundry.ai, Founder and former CEO and

Chairman of Applied Predictive Technologies, and author of Uncontrolled:

The Surprising Payoff of Trial-and-Error for Business, Politics, and Society
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“Experimental design advances each time it is applied to a new domain: agriculture,
chemistry, medicine and now online electronic commerce. This book by three top
experts is rich in practical advice and examples covering both how and why to
experiment online and not get fooled. Experiments can be expensive; not knowing
what works can cost even more.”

— Art Owen Professor of Statistics, Stanford University

“This is a must read book for business executives and operating managers. Just as
operations, finance, accounting and strategy form the basic building blocks for
business, today in the age of Al, understanding and executing online controlled
experiments will be a required knowledge set. Kohavi, Tang and Xu have laid out
the essentials of this new and important knowledge domain that is practically
accessible.”

— Karim R. Lakhani, Professor and Director of Laboratory for

Innovation Science at Harvard, Board Member, Mozilla Corp.

“Serious ‘data-driven’ organizations understand that analytics aren’t enough; they

must commit to experiment. Remarkably accessible and accessibly remarkable, this

book is a manual and manifesto for high-impact experimental design. I found its

pragmatism inspirational. Most importantly, it clarifies how culture rivals technical
competence as a critical success factor.”

— Michael Schrage, research fellow at MIT’s Initiative on the

Digital Economy and author of The Innovator’s Hypothesis:

How Cheap Experiments Are Worth More than Good Ideas

“This important book on experimentation distills the wisdom of three distinguished

leaders from some of the world’s biggest technology companies. If you are a software

engineer, data scientist, or product manager trying to implement a data-driven culture
within your organization, this is an excellent and practical book for you.”

— Daniel Tunkelang, Chief Scientist at Endeca and former Director of

Data Science and Engineering at LinkedIn

“With every industry becoming digitized and data-driven, conducting and benefiting
from controlled online experiments becomes a required skill. Kohavi, Tang and Yu
provide a complete and well-researched guide that will become necessary reading

for data practitioners and executives alike.”
— Evangelos Simoudis, Co-founder and Managing Director Synapse Partners;
author of The Big Data Opportunity in Our Driverless Future

“The authors offer over 10 years of hard-fought lessons in experimentation, in the
most strategic book for the discipline yet”
— Colin McFarland, Director Experimentation Platform at Netflix

“The practical guide to A/B testing distills the experiences from three of the top
minds in experimentation practice into easy and digestible chunks of valuable and
practical concepts. Each chapter walks you through some of the most important
considerations when running experiments - from choosing the right metric to the
benefits of institutional memory. If you are looking for an experimentation coach
that balances science and practicality, then this book is for you.”

— Dylan Lewis, Experimentation Leader, Intuit
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“The only thing worse than no experiment is a misleading one, because it gives you

false confidence! This book details the technical aspects of testing based on insights

from some of the world’s largest testing programs. If you’re involved in online

experimentation in any capacity, read it now to avoid mistakes and gain confidence
in your results.”

- Chris Goward, Author of You Should Test That!,

Founder and CEO of Widerfunnel

“This is a phenomenal book. The authors draw on a wealth of experience and have
produced a readable reference that is somehow both comprehensive and detailed at
the same time. Highly recommended reading for anyone who wants to run serious
digital experiments.”

- Pete Koomen, Co-founder, Optimizely

“The authors are pioneers of online experimentation. The platforms they’ve built
and the experiments they’ve enabled have transformed some of the largest internet
brands. Their research and talks have inspired teams across the industry to adopt
experimentation. This book is the authoritative yet practical text that the industry has
been waiting for.”

— Adil Aijaz, Co-founder and CEO, Split Software
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Trustworthy Online Controlled Experiments
A Practical Guide to A/B Testing

Getting numbers is easy; getting numbers you can trust is hard. This practical guide by
experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to
accelerate innovation using trustworthy online controlled experiments, or A/B tests.
Based on practical experiences at companies that each runs more than 20,000 controlled
experiments a year, the authors share examples, pitfalls, and advice for students and
industry professionals getting started with experiments, plus deeper dives into advanced
topics for experienced practitioners who want to improve the way they and their
organizations make data-driven decisions.

Learn how to:

e Use the scientific method to evaluate hypotheses using controlled experiments

® Define key metrics and ideally an Overall Evaluation Criterion

e Test for trustworthiness of the results and alert experimenters to violated
assumptions

o Interpret and iterate quickly based on the results

e Implement guardrails to protect key business goals

e Build a scalable platform that lowers the marginal cost of experiments close to zero

e Avoid pitfalls such as carryover effects, Twyman’s law, Simpson’s paradox, and
network interactions

e Understand how statistical issues play out in practice, including common violations
of assumptions

RON KOHAVI is a vice president and technical fellow at Airbnb. This book was written
while he was a technical fellow and corporate vice president at Microsoft. He was
previously director of data mining and personalization at Amazon. He received his PhD
in Computer Science from Stanford University. His papers have more than 40,000
citations and three of them are in the top 1,000 most-cited papers in Computer Science.

DIANE TANG is a Google Fellow, with expertise in large-scale data analysis and
infrastructure, online controlled experiments, and ads systems. She has an AB from
Harvard and an MS/PhD from Stanford, with patents and publications in mobile
networking, information visualization, experiment methodology, data infrastructure,
data mining, and large data.

Y A XU heads Data Science and Experimentation at LinkedIn. She has published several
papers on experimentation and is a frequent speaker at top-tier conferences and
universities. She previously worked at Microsoft and received her PhD in Statistics
from Stanford University.
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“At the core of the Lean Methodology is the scientific method: Creating hypotheses,

running experiments, gathering data, extracting insight and validation or

modification of the hypothesis. A/B testing is the gold standard of creating
verifiable and repeatable experiments, and this book is its definitive text.”

— Steve Blank, Adjunct professor at Stanford University, father of modern

entrepreneurship, author of The Startup Owner’s Manual and

The Four Steps to the Epiphany

“This book is a great resource for executives, leaders, researchers or engineers
looking to use online controlled experiments to optimize product features, project
efficiency or revenue. I know firsthand the impact that Kohavi’s work had on Bing
and Microsoft, and I’'m excited that these learnings can now reach a wider audience.”

— Harry Shum, EVP, Microsoft Artificial Intelligence and Research Group

“A great book that is both rigorous and accessible. Readers will learn how to bring

trustworthy controlled experiments, which have revolutionized internet product
development, to their organizations”

— Adam D’Angelo, Co-founder and CEO of Quora and

former CTO of Facebook

“This book is a great overview of how several companies use online experimentation
and A/B testing to improve their products. Kohavi, Tang and Xu have a wealth of
experience and excellent advice to convey, so the book has lots of practical real world
examples and lessons learned over many years of the application of these techniques
at scale.”

— Jeff Dean, Google Senior Fellow and SVP Google Research

“Do you want your organization to make consistently better decisions? This is the new
bible of how to get from data to decisions in the digital age. Reading this book is like
sitting in meetings inside Amazon, Google, LinkedIn, Microsoft. The authors expose
for the first time the way the world’s most successful companies make decisions.
Beyond the admonitions and anecdotes of normal business books, this book shows
what to do and how to do it well. It’s the how-to manual for decision-making in the
digital world, with dedicated sections for business leaders, engineers, and data analysts.”

— Scott Cook, Intuit Co-founder & Chairman of the Executive Committee

“Online controlled experiments are powerful tools. Understanding how they work,
what their strengths are, and how they can be optimized can illuminate both
specialists and a wider audience. This book is the rare combination of technically

authoritative, enjoyable to read, and dealing with highly important matters”
— John P.A. Ioannidis, Professor of Medicine, Health Research and Policy,
Biomedical Data Science, and Statistics at Stanford University

“Which online option will be better? We frequently need to make such choices, and

frequently err. To determine what will actually work better, we need rigorous

controlled experiments, aka A/B testing. This excellent and lively book by experts

from Microsoft, Google, and LinkedIn presents the theory and best practices of A/B
testing. A must read for anyone who does anything online!”

— Gregory Piatetsky-Shapiro, Ph.D., president of KDnuggets,

co-founder of SIGKDD, and LinkedIn Top Voice on

Data Science & Analytics.
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“Ron Kohavi, Diane Tang and Ya Xu are the world’s top experts on online

experiments. I’ve been using their work for years and I'm delighted they have

now teamed up to write the definitive guide. I recommend this book to all my
students and everyone involved in online products and services.”

— Erik Brynjolfsson, Professor at MIT and Co-Author of

The Second Machine Age

“A modern software-supported business cannot compete successfully without online
controlled experimentation. Written by three of the most experienced leaders in the
field, this book presents the fundamental principles, illustrates them with compelling
examples, and digs deeper to present a wealth of practical advice. It’s a “must read”!
— Foster Provost, Professor at NYU Stern School of Business & co-author of the
best-selling Data Science for Business

“In the past two decades the technology industry has learned what scientists have
known for centuries: that controlled experiments are among the best tools to
understand complex phenomena and to solve very challenging problems. The
ability to design controlled experiments, run them at scale, and interpret their
results is the foundation of how modern high tech businesses operate. Between
them the authors have designed and implemented several of the world’s most
powerful experimentation platforms. This book is a great opportunity to learn
from their experiences about how to use these tools and techniques.”

— Kevin Scott, EVP and CTO of Microsoft

“Online experiments have fueled the success of Amazon, Microsoft, LinkedIn and
other leading digital companies. This practical book gives the reader rare access to
decades of experimentation experience at these companies and should be on the
bookshelf of every data scientist, software engineer and product manager.”
— Stefan Thomke, William Barclay Harding Professor, Harvard Business School,
Author of Experimentation Works: The Surprising Power of Business Experiments

“The secret sauce for a successful online business is experimentation. But it is a secret

no longer. Here three masters of the art describe the ABCs of A/B testing so that you
too can continuously improve your online services.”

— Hal Varian, Chief Economist, Google, and author of

Intermediate Microeconomics: A Modern Approach

“Experiments are the best tool for online products and services. This book is full of
practical knowledge derived from years of successful testing at Microsoft Google
and LinkedIn. Insights and best practices are explained with real examples and
pitfalls, their markers and solutions identified. I strongly recommend this book!”

— Preston McAfee, former Chief Economist and VP of Microsoft

“Experimentation is the future of digital strategy and ‘Trustworthy Experiments’ will
be its Bible. Kohavi, Tang and Xu are three of the most noteworthy experts on
experimentation working today and their book delivers a truly practical roadmap
for digital experimentation that is useful right out of the box. The revealing case
studies they conducted over many decades at Microsoft, Amazon, Google and
LinkedIn are organized into easy to understand practical lessens with tremendous
depth and clarity. It should be required reading for any manager of a digital business.”
— Sinan Aral, David Austin Professor of Management,

MIT and author of The Hype Machine
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“Indispensable for any serious experimentation practitioner, this book is highly
practical and goes in-depth like I've never seen before. It’s so useful it feels like
you get a superpower. From statistical nuances to evaluating outcomes to measuring
long term impact, this book has got you covered. Must-read.”

— Peep Laja, top conversion rate expert, Founder and Principal of CXL

“Online experimentation was critical to changing the culture at Microsoft. When
Satya talks about “Growth Mindset,” experimentation is the best way to try new
ideas and learn from them. Learning to quickly iterate controlled experiments drove
Bing to profitability, and rapidly spread across Microsoft through Office, Windows,
and Azure.”

— Eric Boyd, Corporate VP, Al Platform, Microsoft

“As an entrepreneur, scientist, and executive I’ve learned (the hard way) that an

ounce of data is worth a pound of my intuition. But how to get good data? This book

compiles decades of experience at Amazon, Google, LinkedIn, and Microsoft into
an accessible, well-organized guide. It is the bible of online experiments.”

— Oren Etzioni, CEO of Allen Institute of Al and

Professor of Computer Science at University of Washington

“Internet companies have taken experimentation to an unprecedented scale, pace,
and sophistication. These authors have played key roles in these developments and

readers are fortunate to be able to learn from their combined experiences.”
— Dean Eckles, KDD Career Development Professor in Communications and
Technology at MIT and former scientist at Facebook

“A wonderfully rich resource for a critical but under-appreciated area. Real case

studies in every chapter show the inner workings and learnings of successful

businesses. The focus on developing and optimizing an “Overall Evaluation
Criterion” (OEC) is a particularly important lesson.”

— Jeremy Howard, Singularity University, founder of fast.ai,

and former president and chief scientist of Kaggle

“There are many guides to A/B Testing, but few with the pedigree of Trustworthy
Online Controlled Experiments. I've been following Ronny Kohavi for eighteen
years and find his advice to be steeped in practice, honed by experience, and
tempered by doing laboratory work in real world environments. When you add
Diane Tang, and Ya Xu to the mix, the breadth of comprehension is unparalleled.
I challenge you to compare this tome to any other - in a controlled manner, of
course.”
— Jim Sterne, Founder of Marketing Analytics Summit and
Director Emeritus of the Digital Analytics Association

“An extremely useful how-to book for running online experiments that combines

analytical sophistication, clear exposition and the hard-won lessons of practical
experience.”

— Jim Manzi, Founder of Foundry.ai, Founder and former CEO and

Chairman of Applied Predictive Technologies, and author of Uncontrolled:

The Surprising Payoff of Trial-and-Error for Business, Politics, and Society
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“Experimental design advances each time it is applied to a new domain: agriculture,
chemistry, medicine and now online electronic commerce. This book by three top
experts is rich in practical advice and examples covering both how and why to
experiment online and not get fooled. Experiments can be expensive; not knowing
what works can cost even more.”

— Art Owen Professor of Statistics, Stanford University

“This is a must read book for business executives and operating managers. Just as
operations, finance, accounting and strategy form the basic building blocks for
business, today in the age of Al, understanding and executing online controlled
experiments will be a required knowledge set. Kohavi, Tang and Xu have laid out
the essentials of this new and important knowledge domain that is practically
accessible.”

— Karim R. Lakhani, Professor and Director of Laboratory for

Innovation Science at Harvard, Board Member, Mozilla Corp.

“Serious ‘data-driven’ organizations understand that analytics aren’t enough; they

must commit to experiment. Remarkably accessible and accessibly remarkable, this

book is a manual and manifesto for high-impact experimental design. I found its

pragmatism inspirational. Most importantly, it clarifies how culture rivals technical
competence as a critical success factor.”

— Michael Schrage, research fellow at MIT’s Initiative on the

Digital Economy and author of The Innovator’s Hypothesis:

How Cheap Experiments Are Worth More than Good Ideas

“This important book on experimentation distills the wisdom of three distinguished

leaders from some of the world’s biggest technology companies. If you are a software

engineer, data scientist, or product manager trying to implement a data-driven culture
within your organization, this is an excellent and practical book for you.”

— Daniel Tunkelang, Chief Scientist at Endeca and former Director of

Data Science and Engineering at LinkedIn

“With every industry becoming digitized and data-driven, conducting and benefiting
from controlled online experiments becomes a required skill. Kohavi, Tang and Yu
provide a complete and well-researched guide that will become necessary reading

for data practitioners and executives alike.”
— Evangelos Simoudis, Co-founder and Managing Director Synapse Partners;
author of The Big Data Opportunity in Our Driverless Future

“The authors offer over 10 years of hard-fought lessons in experimentation, in the
most strategic book for the discipline yet”
— Colin McFarland, Director Experimentation Platform at Netflix

“The practical guide to A/B testing distills the experiences from three of the top
minds in experimentation practice into easy and digestible chunks of valuable and
practical concepts. Each chapter walks you through some of the most important
considerations when running experiments - from choosing the right metric to the
benefits of institutional memory. If you are looking for an experimentation coach
that balances science and practicality, then this book is for you.”

— Dylan Lewis, Experimentation Leader, Intuit
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“The only thing worse than no experiment is a misleading one, because it gives you

false confidence! This book details the technical aspects of testing based on insights

from some of the world’s largest testing programs. If you’re involved in online

experimentation in any capacity, read it now to avoid mistakes and gain confidence
in your results.”

- Chris Goward, Author of You Should Test That!,

Founder and CEO of Widerfunnel

“This is a phenomenal book. The authors draw on a wealth of experience and have
produced a readable reference that is somehow both comprehensive and detailed at
the same time. Highly recommended reading for anyone who wants to run serious
digital experiments.”

- Pete Koomen, Co-founder, Optimizely

“The authors are pioneers of online experimentation. The platforms they’ve built
and the experiments they’ve enabled have transformed some of the largest internet
brands. Their research and talks have inspired teams across the industry to adopt
experimentation. This book is the authoritative yet practical text that the industry has
been waiting for.”

— Adil Aijaz, Co-founder and CEO, Split Software
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Trustworthy Online Controlled Experiments
A Practical Guide to A/B Testing

Getting numbers is easy; getting numbers you can trust is hard. This practical guide by
experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to
accelerate innovation using trustworthy online controlled experiments, or A/B tests.
Based on practical experiences at companies that each runs more than 20,000 controlled
experiments a year, the authors share examples, pitfalls, and advice for students and
industry professionals getting started with experiments, plus deeper dives into advanced
topics for experienced practitioners who want to improve the way they and their
organizations make data-driven decisions.

Learn how to:

e Use the scientific method to evaluate hypotheses using controlled experiments

® Define key metrics and ideally an Overall Evaluation Criterion

e Test for trustworthiness of the results and alert experimenters to violated
assumptions

o Interpret and iterate quickly based on the results

e Implement guardrails to protect key business goals

e Build a scalable platform that lowers the marginal cost of experiments close to zero

e Avoid pitfalls such as carryover effects, Twyman’s law, Simpson’s paradox, and
network interactions

e Understand how statistical issues play out in practice, including common violations
of assumptions

RON KOHAVI is a vice president and technical fellow at Airbnb. This book was written
while he was a technical fellow and corporate vice president at Microsoft. He was
previously director of data mining and personalization at Amazon. He received his PhD
in Computer Science from Stanford University. His papers have more than 40,000
citations and three of them are in the top 1,000 most-cited papers in Computer Science.

DIANE TANG is a Google Fellow, with expertise in large-scale data analysis and
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“At the core of the Lean Methodology is the scientific method: Creating hypotheses,

running experiments, gathering data, extracting insight and validation or

modification of the hypothesis. A/B testing is the gold standard of creating
verifiable and repeatable experiments, and this book is its definitive text.”

— Steve Blank, Adjunct professor at Stanford University, father of modern

entrepreneurship, author of The Startup Owner’s Manual and

The Four Steps to the Epiphany

“This book is a great resource for executives, leaders, researchers or engineers
looking to use online controlled experiments to optimize product features, project
efficiency or revenue. I know firsthand the impact that Kohavi’s work had on Bing
and Microsoft, and I’'m excited that these learnings can now reach a wider audience.”

— Harry Shum, EVP, Microsoft Artificial Intelligence and Research Group

“A great book that is both rigorous and accessible. Readers will learn how to bring

trustworthy controlled experiments, which have revolutionized internet product
development, to their organizations”

— Adam D’Angelo, Co-founder and CEO of Quora and

former CTO of Facebook

“This book is a great overview of how several companies use online experimentation
and A/B testing to improve their products. Kohavi, Tang and Xu have a wealth of
experience and excellent advice to convey, so the book has lots of practical real world
examples and lessons learned over many years of the application of these techniques
at scale.”

— Jeff Dean, Google Senior Fellow and SVP Google Research

“Do you want your organization to make consistently better decisions? This is the new
bible of how to get from data to decisions in the digital age. Reading this book is like
sitting in meetings inside Amazon, Google, LinkedIn, Microsoft. The authors expose
for the first time the way the world’s most successful companies make decisions.
Beyond the admonitions and anecdotes of normal business books, this book shows
what to do and how to do it well. It’s the how-to manual for decision-making in the
digital world, with dedicated sections for business leaders, engineers, and data analysts.”

— Scott Cook, Intuit Co-founder & Chairman of the Executive Committee

“Online controlled experiments are powerful tools. Understanding how they work,
what their strengths are, and how they can be optimized can illuminate both
specialists and a wider audience. This book is the rare combination of technically

authoritative, enjoyable to read, and dealing with highly important matters”
— John P.A. Ioannidis, Professor of Medicine, Health Research and Policy,
Biomedical Data Science, and Statistics at Stanford University

“Which online option will be better? We frequently need to make such choices, and

frequently err. To determine what will actually work better, we need rigorous

controlled experiments, aka A/B testing. This excellent and lively book by experts

from Microsoft, Google, and LinkedIn presents the theory and best practices of A/B
testing. A must read for anyone who does anything online!”

— Gregory Piatetsky-Shapiro, Ph.D., president of KDnuggets,

co-founder of SIGKDD, and LinkedIn Top Voice on

Data Science & Analytics.
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“Ron Kohavi, Diane Tang and Ya Xu are the world’s top experts on online

experiments. I’ve been using their work for years and I'm delighted they have

now teamed up to write the definitive guide. I recommend this book to all my
students and everyone involved in online products and services.”

— Erik Brynjolfsson, Professor at MIT and Co-Author of

The Second Machine Age

“A modern software-supported business cannot compete successfully without online
controlled experimentation. Written by three of the most experienced leaders in the
field, this book presents the fundamental principles, illustrates them with compelling
examples, and digs deeper to present a wealth of practical advice. It’s a “must read”!
— Foster Provost, Professor at NYU Stern School of Business & co-author of the
best-selling Data Science for Business

“In the past two decades the technology industry has learned what scientists have
known for centuries: that controlled experiments are among the best tools to
understand complex phenomena and to solve very challenging problems. The
ability to design controlled experiments, run them at scale, and interpret their
results is the foundation of how modern high tech businesses operate. Between
them the authors have designed and implemented several of the world’s most
powerful experimentation platforms. This book is a great opportunity to learn
from their experiences about how to use these tools and techniques.”

— Kevin Scott, EVP and CTO of Microsoft

“Online experiments have fueled the success of Amazon, Microsoft, LinkedIn and
other leading digital companies. This practical book gives the reader rare access to
decades of experimentation experience at these companies and should be on the
bookshelf of every data scientist, software engineer and product manager.”
— Stefan Thomke, William Barclay Harding Professor, Harvard Business School,
Author of Experimentation Works: The Surprising Power of Business Experiments

“The secret sauce for a successful online business is experimentation. But it is a secret

no longer. Here three masters of the art describe the ABCs of A/B testing so that you
too can continuously improve your online services.”

— Hal Varian, Chief Economist, Google, and author of

Intermediate Microeconomics: A Modern Approach

“Experiments are the best tool for online products and services. This book is full of
practical knowledge derived from years of successful testing at Microsoft Google
and LinkedIn. Insights and best practices are explained with real examples and
pitfalls, their markers and solutions identified. I strongly recommend this book!”

— Preston McAfee, former Chief Economist and VP of Microsoft

“Experimentation is the future of digital strategy and ‘Trustworthy Experiments’ will
be its Bible. Kohavi, Tang and Xu are three of the most noteworthy experts on
experimentation working today and their book delivers a truly practical roadmap
for digital experimentation that is useful right out of the box. The revealing case
studies they conducted over many decades at Microsoft, Amazon, Google and
LinkedIn are organized into easy to understand practical lessens with tremendous
depth and clarity. It should be required reading for any manager of a digital business.”
— Sinan Aral, David Austin Professor of Management,

MIT and author of The Hype Machine
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“Indispensable for any serious experimentation practitioner, this book is highly
practical and goes in-depth like I've never seen before. It’s so useful it feels like
you get a superpower. From statistical nuances to evaluating outcomes to measuring
long term impact, this book has got you covered. Must-read.”

— Peep Laja, top conversion rate expert, Founder and Principal of CXL

“Online experimentation was critical to changing the culture at Microsoft. When
Satya talks about “Growth Mindset,” experimentation is the best way to try new
ideas and learn from them. Learning to quickly iterate controlled experiments drove
Bing to profitability, and rapidly spread across Microsoft through Office, Windows,
and Azure.”

— Eric Boyd, Corporate VP, Al Platform, Microsoft

“As an entrepreneur, scientist, and executive I’ve learned (the hard way) that an

ounce of data is worth a pound of my intuition. But how to get good data? This book

compiles decades of experience at Amazon, Google, LinkedIn, and Microsoft into
an accessible, well-organized guide. It is the bible of online experiments.”

— Oren Etzioni, CEO of Allen Institute of Al and

Professor of Computer Science at University of Washington

“Internet companies have taken experimentation to an unprecedented scale, pace,
and sophistication. These authors have played key roles in these developments and

readers are fortunate to be able to learn from their combined experiences.”
— Dean Eckles, KDD Career Development Professor in Communications and
Technology at MIT and former scientist at Facebook

“A wonderfully rich resource for a critical but under-appreciated area. Real case

studies in every chapter show the inner workings and learnings of successful

businesses. The focus on developing and optimizing an “Overall Evaluation
Criterion” (OEC) is a particularly important lesson.”

— Jeremy Howard, Singularity University, founder of fast.ai,

and former president and chief scientist of Kaggle

“There are many guides to A/B Testing, but few with the pedigree of Trustworthy
Online Controlled Experiments. I've been following Ronny Kohavi for eighteen
years and find his advice to be steeped in practice, honed by experience, and
tempered by doing laboratory work in real world environments. When you add
Diane Tang, and Ya Xu to the mix, the breadth of comprehension is unparalleled.
I challenge you to compare this tome to any other - in a controlled manner, of
course.”
— Jim Sterne, Founder of Marketing Analytics Summit and
Director Emeritus of the Digital Analytics Association

“An extremely useful how-to book for running online experiments that combines

analytical sophistication, clear exposition and the hard-won lessons of practical
experience.”

— Jim Manzi, Founder of Foundry.ai, Founder and former CEO and

Chairman of Applied Predictive Technologies, and author of Uncontrolled:

The Surprising Payoff of Trial-and-Error for Business, Politics, and Society
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“Experimental design advances each time it is applied to a new domain: agriculture,
chemistry, medicine and now online electronic commerce. This book by three top
experts is rich in practical advice and examples covering both how and why to
experiment online and not get fooled. Experiments can be expensive; not knowing
what works can cost even more.”

— Art Owen Professor of Statistics, Stanford University

“This is a must read book for business executives and operating managers. Just as
operations, finance, accounting and strategy form the basic building blocks for
business, today in the age of Al, understanding and executing online controlled
experiments will be a required knowledge set. Kohavi, Tang and Xu have laid out
the essentials of this new and important knowledge domain that is practically
accessible.”

— Karim R. Lakhani, Professor and Director of Laboratory for

Innovation Science at Harvard, Board Member, Mozilla Corp.

“Serious ‘data-driven’ organizations understand that analytics aren’t enough; they

must commit to experiment. Remarkably accessible and accessibly remarkable, this

book is a manual and manifesto for high-impact experimental design. I found its

pragmatism inspirational. Most importantly, it clarifies how culture rivals technical
competence as a critical success factor.”

— Michael Schrage, research fellow at MIT’s Initiative on the

Digital Economy and author of The Innovator’s Hypothesis:

How Cheap Experiments Are Worth More than Good Ideas

“This important book on experimentation distills the wisdom of three distinguished

leaders from some of the world’s biggest technology companies. If you are a software

engineer, data scientist, or product manager trying to implement a data-driven culture
within your organization, this is an excellent and practical book for you.”

— Daniel Tunkelang, Chief Scientist at Endeca and former Director of

Data Science and Engineering at LinkedIn

“With every industry becoming digitized and data-driven, conducting and benefiting
from controlled online experiments becomes a required skill. Kohavi, Tang and Yu
provide a complete and well-researched guide that will become necessary reading

for data practitioners and executives alike.”
— Evangelos Simoudis, Co-founder and Managing Director Synapse Partners;
author of The Big Data Opportunity in Our Driverless Future

“The authors offer over 10 years of hard-fought lessons in experimentation, in the
most strategic book for the discipline yet”
— Colin McFarland, Director Experimentation Platform at Netflix

“The practical guide to A/B testing distills the experiences from three of the top
minds in experimentation practice into easy and digestible chunks of valuable and
practical concepts. Each chapter walks you through some of the most important
considerations when running experiments - from choosing the right metric to the
benefits of institutional memory. If you are looking for an experimentation coach
that balances science and practicality, then this book is for you.”

— Dylan Lewis, Experimentation Leader, Intuit
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“The only thing worse than no experiment is a misleading one, because it gives you

false confidence! This book details the technical aspects of testing based on insights

from some of the world’s largest testing programs. If you’re involved in online

experimentation in any capacity, read it now to avoid mistakes and gain confidence
in your results.”

- Chris Goward, Author of You Should Test That!,

Founder and CEO of Widerfunnel

“This is a phenomenal book. The authors draw on a wealth of experience and have
produced a readable reference that is somehow both comprehensive and detailed at
the same time. Highly recommended reading for anyone who wants to run serious
digital experiments.”

- Pete Koomen, Co-founder, Optimizely

“The authors are pioneers of online experimentation. The platforms they’ve built
and the experiments they’ve enabled have transformed some of the largest internet
brands. Their research and talks have inspired teams across the industry to adopt
experimentation. This book is the authoritative yet practical text that the industry has
been waiting for.”

— Adil Aijaz, Co-founder and CEO, Split Software
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Preface
How to Read This Book

If we have data, let’s look at data.
If all we have are opinions, let’s go with mine
— Jim Barksdale, Former CEO of Netscape

Our goal in writing this book is to share practical lessons from decades of
experience running online controlled experiments at scale at Amazon and
Microsoft (Ron), Google (Diane), and Microsoft and LinkedIn (Ya). While
we are writing this book in our capacity as individuals and not as representa-
tives of Google, LinkedIn, or Microsoft, we have distilled key lessons and
pitfalls encountered over the years and provide guidance for both software
platforms and the corporate cultural aspects of using online controlled experi-
ments to establish a data-driven culture that informs rather than relies on the
HiPPO (Highest Paid Person’s Opinion) (R. Kohavi, HIPPO FAQ 2019). We
believe many of these lessons apply in the online setting, to large or small
companies, or even teams and organizations within a company. A concern we
share is the need to evaluate the trustworthiness of experiment results. We
believe in the skepticism implied by Twyman’s Law: Any figure that looks
interesting or different is usually wrong; we encourage readers to double-
check results and run validity tests, especially for breakthrough positive
results. Getting numbers is easy; getting numbers you can trust is hard!

Part I is designed to be read by everyone, regardless of background, and
consists of four chapters.

e Chapter 1 is an overview of the benefits of running online controlled
experiments and introduces experiment terminology.

e Chapter 2 uses an example to run through the process of running an
experiment end-to-end.

e Chapter 3 describes common pitfalls and how to build experimentation
trustworthiness, and

XV
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XVi Preface

e Chapter 4 overviews what it takes to build an experiment platform and scale
online experimentation.

Parts II through V can be consumed by everyone as needed but are written with
a focus on a specific audience. Part II contains five chapters on fundamentals,
such as Organizational Metrics. The topics in Part II are recommended for
everyone, especially leaders and executives. Part III contains two chapters that
introduce techniques to complement online controlled experiments that
leaders, data scientists, engineers, analysts, product managers, and others
would find useful for guiding resources and time investment. Part IV focuses
on building an experimentation platform and is aimed toward engineers.
Finally, Part V digs into advanced analysis topics and is geared toward data
scientists.

Our website, https://experimentguide.com, is a companion to this book. It
contains additional material, errata, and provides an area for open discussion.
The authors intend to donate all proceeds from this book to charity.
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1

Introduction and Motivation

One accurate measurement is worth more than a thousand expert
opinions
— Admiral Grace Hopper

In 2012, an employee working on Bing, Microsoft’s search engine, suggested
changing how ad headlines display (Kohavi and Thomke 2017). The idea was
to lengthen the title line of ads by combining it with the text from the first line
below the title, as shown in Figure 1.1.

Nobody thought this simple change, among the hundreds suggested, would
be the best revenue-generating idea in Bing’s history!

The feature was prioritized low and languished in the backlog for more than
six months until a software developer decided to try the change, given how
easy it was to code. He implemented the idea and began evaluating the idea on
real users, randomly showing some of them the new title layout and others the
old one. User interactions with the website were recorded, including ad clicks
and the revenue generated from them. This is an example of an A/B test, the
simplest type of controlled experiment that compares two variants: A and B, or
a Control and a Treatment.

A few hours after starting the test, a revenue-too-high alert triggered,
indicating that something was wrong with the experiment. The Treatment, that
is, the new title layout, was generating too much money from ads. Such “too
good to be true” alerts are very useful, as they usually indicate a serious bug,
such as cases where revenue was logged twice (double billing) or where only
ads displayed, and the rest of the web page was broken.

For this experiment, however, the revenue increase was valid. Bing’s revenue
increased by a whopping 12%, which at the time translated to over $100M
annually in the US alone, without significantly hurting key user-experience
metrics. The experiment was replicated multiple times over a long period.

3
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Figure 1.1 An experiment changing the way ads display on Bing

The example typifies several key themes in online controlled experiments:

e It is hard to assess the value of an idea. In this case, a simple change worth
over $100M/year was delayed for months.

e Small changes can have a big impact. A $100M/year return-on-investment
(ROI) on a few days’ work for one engineer is about as extreme as it gets.
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Online Controlled Experiments Terminology 5

e Experiments with big impact are rare. Bing runs over 10,000 experiments a
year, but simple features resulting in such a big improvement happen only
once every few years.

e The overhead of running an experiment must be small. Bing’s engineers had
access to ExP, Microsoft’s experimentation system, which made it easy to
scientifically evaluate the idea.

e The overall evaluation criterion (OEC, described more later in this chapter)
must be clear. In this case, revenue was a key component of the OEC, but
revenue alone is insufficient as an OEC. It could lead to plastering the web
site with ads, which is known to hurt the user experience. Bing uses an OEC
that weighs revenue against user-experience metrics, including Sessions per
user (are users abandoning or increasing engagement) and several other
components. The key point is that user-experience metrics did not signifi-
cantly degrade even though revenue increased dramatically.

The next section introduces the terminology of controlled experiments.

Online Controlled Experiments Terminology

Controlled experiments have a long and fascinating history, which we share
online (Kohavi, Tang and Xu 2019). They are sometimes called A/B tests,
A/B/n tests (to emphasize multiple variants), field experiments, randomized
controlled experiments, split tests, bucket tests, and flights. In this book, we
use the terms controlled experiments and A/B tests interchangeably, regardless
of the number of variants.

Online controlled experiments are used heavily at companies like Airbnb,
Amazon, Booking.com, eBay, Facebook, Google, LinkedIn, Lyft, Microsoft,
Netflix, Twitter, Uber, Yahoo!/Oath, and Yandex (Gupta et al. 2019). These
companies run thousands to tens of thousands of experiments every year,
sometimes involving millions of users and testing everything, including
changes to the user interface (UI), relevance algorithms (search, ads, personal-
ization, recommendations, and so on), latency/performance, content manage-
ment systems, customer support systems, and more. Experiments are run on
multiple channels: websites, desktop applications, mobile applications, and
e-mail.

In the most common online controlled experiments, users are randomly split
between variants in a persistent manner (a user receives the same variant in
multiple visits). In our opening example from Bing, the Control was the
original display of ads and the Treatment was the display of ads with longer
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Figure 1.2 A simple controlled experiment: An A/B Test

titles. The users’ interactions with the Bing web site were instrumented, that is,
monitored and logged. From the logged data, metrics are computed, which
allowed us to assess the difference between the variants for each metric.

In the simplest controlled experiments, there are two variants: Control (A)
and Treatment (B), as shown in Figure 1.2.

We follow the terminology of Kohavi and Longbottom (2017), and Kohavi,
Longbottom et al. (2009) and provide related terms from other fields below.
You can find many other resources on experimentation and A/B testing at the
end of this chapter under Additional Reading.

Overall Evaluation Criterion (OEC): A quantitative measure of the
experiment‘s objective. For example, your OEC might be active days per user,
indicating the number of days during the experiment that users were active
(i.e., they visited and took some action). Increasing this OEC implies that users
are visiting your site more often, which is a great outcome. The OEC must be
measurable in the short term (the duration of an experiment) yet believed to
causally drive long-term strategic objectives (see Strategy, Tactics, and their
Relationship to Experiments later in this chapter and Chapter 7). In the case of a
search engine, the OEC can be a combination of usage (e.g., sessions-per-user),
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Online Controlled Experiments Terminology 7

relevance (e.g., successful sessions, time to success), and advertisement revenue
(not all search engines use all of these metrics or only these metrics).

In statistics, this is often called the Response or Dependent variable (Mason,
Gunst and Hess 1989, Box, Hunter and Hunter 2005); other synonyms are
Outcome, Evaluation and Fitness Function (Quarto-vonTivadar 2006). Experi-
ments can have multiple objectives and analysis can use a balanced scorecard
approach (Kaplan and Norton 1996), although selecting a single metric,
possibly as a weighted combination of such objectives is highly desired and
recommended (Roy 2001, 50, 405—429).

We take a deeper dive into determining the OEC for experiments in
Chapter 7.

Parameter: A controllable experimental variable that is thought to influ-
ence the OEC or other metrics of interest. Parameters are sometimes called
factors or variables. Parameters are assigned values, also called levels. In
simple A/B tests, there is commonly a single parameter with two values. In
the online world, it is common to use univariable designs with multiple values
(such as, A/B/C/D). Multivariable tests, also called Multivariate Tests (MVTs),
evaluate multiple parameters (variables) together, such as font color and font
size, allowing experimenters to discover a global optimum when parameters
interact (see Chapter 4).

Variant: A user experience being tested, typically by assigning values to
parameters. In a simple A/B test, A and B are the two variants, usually called
Control and Treatment. In some literature, a variant only means a Treatment;
we consider the Control to be a special variant: the existing version on which
to run the comparison. For example, in case of a bug discovered in the
experiment, you would abort the experiment and ensure that all users are
assigned to the Control variant.

Randomization Unit: A pseudo-randomization (e.g., hashing) process is
applied to units (e.g., users or pages) to map them to variants. Proper random-
ization is important to ensure that the populations assigned to the different
variants are similar statistically, allowing causal effects to be determined with
high probability. You must map units to variants in a persistent and independ-
ent manner (i.e., if user is the randomization unit, a user should consistently
see the same experience, and the assignment of a user to a variant should not
tell you anything about the assignment of a different user to its variant). It is
very common, and we highly recommend, to use users as a randomization unit
when running controlled experiments for online audiences. Some experimental
designs choose to randomize by pages, sessions, or user-day (i.e., the experi-
ment remains consistent for the user for each 24-hour window determined by
the server). See Chapter 14 for more information.
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8 1 Introduction and Motivation

Proper randomization is critical! If the experimental design assigns an equal
percentage of users to each variant, then each user should have an equal chance
of being assigned to each variant. Do not take randomization lightly. The
examples below demonstrate the challenge and importance of proper
randomization.

o The RAND corporation needed random numbers for Monte Carlo methods
in the 1940s, so they created a book of a million random digits generated
using a pulse machine. However, due to skews in the hardware, the original
table was found to have significant biases and the digits had to re-
randomized in a new edition of the book (RAND 1955).

e Controlled experiments were initially used in medical domains. The US
Veterans Administration (VA) conducted an experiment (drug trial) of
streptomycin for tuberculosis, but the trials failed because physicians intro-
duced biases and influenced the selection process (Marks 1997). Similar
trials in Great Britain were done with blind protocols and were successful,
creating what is now called a watershed moment in controlled trials (Doll
1998).

No factor should be allowed to influence variant assignment. Users (units)
cannot be distributed “any old which way” (Weiss 1997). It is important to
note that random does not mean “haphazard or unplanned, but a deliberate
choice based on probabilities” (Mosteller, Gilbert and McPeek 1983). Senn
(2012) discusses some myths of randomization.

Why Experiment? Correlations, Causality,
and Trustworthiness

Let’s say you’re working for a subscription business like Netflix, where X% of
users churn (end their subscription) every month. You decide to introduce a
new feature and observe that churn rate for users using that feature is X%/2,
that is, half. You might be tempted to claim causality; the feature is reducing
churn by half. This leads to the conclusion that if we make the feature more
discoverable and used more often, subscriptions will soar. Wrong! Given the
data, no conclusion can be drawn about whether the feature reduces or
increases user churn, and both are possible.

An example demonstrating this fallacy comes from Microsoft Office 365,
another subscription business. Office 365 users that see error messages and
experience crashes have lower churn rates, but that does not mean that Office
365 should show more error messages or that Microsoft should lower code
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Figure 1.3 A simple hierarchy of evidence for assessing the quality of trial design
(Greenhalgh 2014)

quality, causing more crashes. It turns out that all three events are caused by a
single factor: usage. Heavy users of the product see more error messages, experi-
ence more crashes, and have lower churn rates. Correlation does not imply
causality and overly relying on these observations leads to faulty decisions.

In 1995, Guyatt et al. (1995) introduced the hierarchy of evidence as a way to
grade recommendations in medical literature, which Greenhalgh expanded on in
her discussions on practicing evidence-based medicine (1997, 2014). Figure 1.3
shows a simple hierarchy of evidence, translated to our terminology, based on
Bailar (1983, 1). Randomized controlled experiments are the gold standard for
establishing causality. Systematic reviews, that is, meta-analysis, of controlled
experiments provides more evidence and generalizability.

More complex models, such as the Levels of Evidence by the Oxford Centre
for Evidence-based Medicine are also available (2009).

The experimentation platforms used by our companies allow experimenters
at Google, LinkedIn, and Microsoft to run tens of thousands of online con-
trolled experiments a year with a high degree of trust in the results. We believe
online controlled experiments are:

e The best scientific way to establish causality with high probability.
e Able to detect small changes that are harder to detect with other techniques,
such as changes over time (sensitivity).
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10 1 Introduction and Motivation

e Able to detect unexpected changes. Often underappreciated, but many
experiments uncover surprising impacts on other metrics, be it performance
degradation, increased crashes/errors, or cannibalizing clicks from other
features.

A key focus of this book is highlighting potential pitfalls in experiments and
suggesting methods that improve trust in results. Online controlled experi-
ments provide an unparalleled ability to electronically collect reliable data at
scale, randomize well, and avoid or detect pitfalls (see Chapter 11). We
recommend using other, less trustworthy, methods, including observational
studies, when online controlled experiments are not possible.

Necessary Ingredients for Running Useful
Controlled Experiments

Not every decision can be made with the scientific rigor of a controlled
experiment. For example, you cannot run a controlled experiment on mergers
and acquisitions (M&A), as we cannot have both the merger/acquisition and its
counterfactual (no such event) happening concurrently. We now review the
necessary technical ingredients for running useful controlled experiments
(Kohavi, Crook and Longbotham 2009), followed by organizational tenets.
In Chapter 4, we cover the experimentation maturity model.

1. There are experimental units (e.g., users) that can be assigned to different
variants with no interference (or little interference); for example, users in
Treatment do not impact users in Control (see Chapter 22).

2. There are enough experimental units (e.g., users). For controlled experi-
ments to be useful, we recommend thousands of experimental units: the
larger the number, the smaller the effects that can be detected. The good
news is that even small software startups typically get enough users quickly
and can start to run controlled experiments, initially looking for big effects.
As the business grows, it becomes more important to detect smaller changes
(e.g., large web sites must be able to detect small changes to key metrics
impacting user experience and fractions of a percent change to revenue),
and the sensitivity improves with a growing user base.

3. Key metrics, ideally an OEC, are agreed upon and can be practically
evaluated. If the goals are too hard to measure, it is important to agree on
surrogates (see Chapter 7). Reliable data can be collected, ideally cheaply
and broadly. In software, it is usually easy to log system events and user
actions (see Chapter 13).
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Tenets 11

4. Changes are easy to make. Software is typically easier to change than
hardware; but even in software, some domains require a certain level of
quality assurance. Changes to a recommendation algorithm are easy to
make and evaluate; changes to software in airplane flight control systems
require a whole different approval process by the Federal Aviation Admin-
istration (FAA). Server-side software is much easier to change than client-
side (see Chapter 12), which is why calling services from client software is
becoming more common, enabling upgrades and changes to the services to
be done more quickly and using controlled experiments.

Most non-trivial online services meet, or could meet, the necessary ingredients
for running an agile development process based on controlled experiments.
Many implementations of software+services could also meet the requirements
relatively easily. Thomke wrote that organizations will recognize maximal
benefits from experimentation when it is used in conjunction with an “innov-
ation system” (Thomke 2003). Agile software development is such an innov-
ation system.

When controlled experiments are not possible, modeling could be done, and
other experimental techniques might be used (see Chapter 10). The key is that
if controlled experiments can be run, they provide the most reliable and
sensitive mechanism to evaluate changes.

Tenets

There are three key tenets for organizations that wish to run online controlled
experiments (Kohavi et al. 2013):

1. The organization wants to make data-driven decisions and has formalized
an OEC.

2. The organization is willing to invest in the infrastructure and tests to run
controlled experiments and ensure that the results are trustworthy.

3. The organization recognizes that it is poor at assessing the value of ideas.

Tenet 1: The Organization Wants to Make Data-Driven
Decisions and Has Formalized an OEC

You will rarely hear someone at the head of an organization say that they don’t
want to be data-driven (with the notable exception of Apple under Steve Jobs,
where Ken Segall claimed that “we didn’t test a single ad. Not for print, TV,
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12 1 Introduction and Motivation

billboards, the web, retail, or anything” (Segall 2012, 42). But measuring the
incremental benefit to users from new features has cost, and objective meas-
urements typically show that progress is not as rosy as initially envisioned.
Many organizations will not spend the resources required to define and
measure progress. It is often easier to generate a plan, execute against it, and
declare success, with the key metric being: “percent of plan delivered,” ignor-
ing whether the feature has any positive impact to key metrics.

To be data-driven, an organization should define an OEC that can be easily
measured over relatively short durations (e.g., one to two weeks). Large organ-
izations may have multiple OECs or several key metrics that are shared with
refinements for different areas. The hard part is finding metrics measurable in a
short period, sensitive enough to show differences, and that are predictive of
long-term goals. For example, “Profit” is not a good OEC, as short-term theat-
rics (e.g., raising prices) can increase short-term profit, but may hurt it in the long
run. Customer lifetime value is a strategically powerful OEC (Kohavi, Long-
bottom et al. 2009). We cannot overemphasize the importance of agreeing on a
good OEC that your organization can align behind; see Chapter 6.

The terms “data-informed” or “data-aware” are sometimes used to avoid the
implication that a single source of data (e.g., a controlled experiment) “drives”
the decisions (King, Churchill and Tan 2017, Knapp et al. 2006). We use data-
driven and data-informed as synonyms in this book. Ultimately, a decision
should be made with many sources of data, including controlled experiments,
surveys, estimates of maintenance costs for the new code, and so on. A data-
driven or a data-informed organization gathers relevant data to drive a decision
and inform the HiPPO (Highest Paid Person’s Opinion) rather than relying on
intuition (Kohavi 2019).

Tenet 2: The Organization Is Willing to Invest in the
Infrastructure and Tests to Run Controlled Experiments and
Ensure That Their Results Are Trustworthy

In the online software domain (websites, mobile, desktop applications, and
services) the necessary conditions for controlled experiments can be met
through software engineering work (see Necessary Ingredients for Running
Useful Controlled Experiments): it is possible to reliably randomize users; it is
possible to collect telemetry; and it is relatively easy to introduce software
changes, such as new features (see Chapter 4). Even relatively small websites
have enough users to run the necessary statistical tests (Kohavi, Crook and
Longbotham 2009).
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Controlled experiments are especially useful in combination with Agile
software development (Martin 2008, K. S. Rubin 2012), Customer Develop-
ment process (Blank 2005), and MVPs (Minimum Viable Products), as popu-
larized by Eric Ries in The Lean Startup (Ries 2011).

In other domains, it may be hard or impossible to reliably run controlled
experiments. Some interventions required for controlled experiments in med-
ical domains may be unethical or illegal. Hardware devices may have long lead
times for manufacturing and modifications are difficult, so controlled experi-
ments with users are rarely run on new hardware devices (e.g., new mobile
phones). In these situations, other techniques, such as Complementary Tech-
niques (see Chapter 10 ), may be required when controlled experiments cannot
be run.

Assuming you can run controlled experiments, it is important to ensure their
trustworthiness. When running online experiments, getting numbers is easy;
getting numbers you can trust is hard. Chapter 3 is dedicated to trustworthy
results.

Tenet 3: The Organization Recognizes That It Is Poor
at Assessing the Value of Ideas

Features are built because teams believe they are useful, yet in many domains
most ideas fail to improve key metrics. Only one third of the ideas tested at
Microsoft improved the metric(s) they were designed to improve (Kohavi,
Crook and Longbotham 2009). Success is even harder to find in well-
optimized domains like Bing and Google, whereby some measures’ success
rate is about 10-20% (Manzi 2012).

Fareed Mosavat, Slack’s Director of Product and Lifecycle tweeted that with
all of Slack’s experience, only about 30% of monetization experiments show
positive results; “if you are on an experiment-driven team, get used to, at best,
70% of your work being thrown away. Build your processes accordingly”
(Mosavat 2019).

Avinash Kaushik wrote in his Experimentation and Testing primer (Kaushik
2006) that “80% of the time you/we are wrong about what a customer wants.”
Mike Moran (Moran 2007, 240) wrote that Netflix considers 90% of what they
try to be wrong. Regis Hadiaris from Quicken Loans wrote that “in the five
years I’ve been running tests, I'm only about as correct in guessing the results
as a major league baseball player is in hitting the ball. That’s right — I’ve been
doing this for 5 years, and I can only ‘guess’ the outcome of a test about 33%
of the time!” (Moran 2008). Dan McKinley at Etsy (McKinley 2013) wrote
“nearly everything fails” and for features, he wrote “it’s been humbling to
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14 1 Introduction and Motivation

realize how rare it is for them to succeed on the first attempt. I strongly suspect
that this experience is universal, but it is not universally recognized or
acknowledged.” Finally, Colin McFarland wrote in the book Experiment!
(McFarland 2012, 20) “No matter how much you think it’s a no-brainer,
how much research you’ve done, or how many competitors are doing it,
sometimes, more often than you might think, experiment ideas simply fail.”

Not every domain has such poor statistics, but most who have run controlled
experiments in customer-facing websites and applications have experienced
this humbling reality: we are poor at assessing the value of ideas.

Improvements over Time

In practice, improvements to key metrics are achieved by many small changes:
0.1% to 2%. Many experiments only impact a segment of users, so you must
dilute the impact of a 5% improvement for 10% of your users, which results in
a much smaller impact (e.g., 0.5% if the triggered population is similar to the
rest of the users); see Chapter 3. As Al Pacino says in the movie Any Given
Sunday, “. . .winning is done inch by inch.”

Google Ads Example

In 2011, Google launched an improved ad ranking mechanism after over a year
of development and incremental experiments (Google 2011). Engineers
developed and experimented with new and improved models for measuring
the quality score of ads within the existing ad ranking mechanism, as well as
with changes to the ad auction itself. They ran hundreds of controlled experi-
ments and multiple iterations; some across all markets, and some long term in
specific markets to understand the impact on advertisers in more depth. This
large backend change — and running controlled experiments — ultimately
validated how planning multiple changes and layering them together improved
the user’s experience by providing higher quality ads, and improved their
advertiser’s experience moving towards lower average prices for the higher
quality ads.

Bing Relevance Example

The Relevance team at Bing consists of several hundred people tasked with
improving a single OEC metric by 2% every year. The 2% is the sum of the
Treatment effects (i.e., the delta of the OEC) in all controlled experiments that
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Improvements over Time 15

shipped to users over the year, assuming they are additive. Because the team
runs thousands of experiment Treatments, and some may appear positive by
chance (Lee and Shen 2018), credit towards the 2% is assigned based on a
replication experiment: once the implementation of an idea is successful,
possibly after multiple iterations and refinements, a certification experiment
is run with a single Treatment. The Treatment effect of this certification
experiment determines the credit towards the 2% goal. Recent development
suggests shrinking the Treatment effect to improve precision (Coey and
Cunningham 2019).

Bing Ads Example

The Ads team at Bing has consistently grown revenue 15—25% per year
(eMarketer 2016), but most improvements were done inch-by-inch. Every
month a “package” was shipped, the results of many experiments, as shown
in Figure 1.4. Most improvements were small, some monthly packages were
even known to be negative, as a result of space constraints or legal

requirements.
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Jan. May |:| July Oct. Apr. Aug.
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8.6% Mar. Aug.
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(*) Numbers have been perturbed for obvious reasons

Figure 1.4 Bing Ad Revenue over Time (y-axis represents about 20% growth/
year). The specific numbers are not important
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16 1 Introduction and Motivation

It is informative to see the seasonality spikes around December when
purchase intent by users rises dramatically, so ad space is increased, and
revenue per thousand searches increases.

Examples of Interesting Online Controlled Experiments

Interesting experiments are ones where the absolute difference between the
expected outcome and the actual result is large. If you thought something was
going to happen and it happened, then you haven’t learned much. If you
thought something was going to happen and it didn’t, then you’ve learned
something important. And if you thought something minor was going to
happen, and the results are a major surprise and lead to a breakthrough, you’ve
learned something highly valuable.

The Bing example at the beginning of this chapter and those in this section
are uncommon successes with surprising, highly positive, results. Bing’s
attempt to integrate with social networks, such as Facebook and Twitter, are
an example of expecting a strong result and not seeing it — the effort was
abandoned after many experiments showed no value for two years.

While sustained progress is a matter of continued experimentation and many
small improvements, as shown in the section Bing Ads Example, here are
several examples highlighting large surprising effects that stress how poorly
we assess the value of ideas.

UI Example: 41 Shades of Blue

Small design decisions can have significant impact, as both Google and Micro-
soft have consistently shown. Google tested 41 gradations of blue on Google
search results pages (Holson 2009), frustrating the visual design lead at the time.
However, Google’s tweaks to the color scheme ended up being substantially
positive on user engagement (note that Google does not report on the results of
individual changes) and led to a strong partnership between design and experi-
mentation moving forward. Microsoft’s Bing color tweaks similarly showed
that users were more successful at completing tasks, their time-to-success
improved, and monetization improved to the tune of over $10 M annually in
the United States (Kohavi et al. 2014, Kohavi and Thomke 2017).

While these are great examples of tiny changes causing massive
impact, given that a wide sweep of colors was done, it is unlikely that playing
around with colors in additional experiments will yield more significant
improvements.
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Interesting Online Controlled Experiments 17

You could save $30 today with the Amazon Visa® Card:

Your current subtotal:  §32.20
Amazon Visa discount: - $30.00 () Find out how )

Your new subtotal: $2.20

Save $30 off your first purchase, earn 3% rewards, get a D% APR*, and pay no annual
fee.

Figure 1.5 Amazon’s credit card offer with savings on cart total

Making an Offer at the Right Time

In 2004, Amazon placed a credit-card offer on the home page. It was highly
profitable but had a very low click-through rate (CTR). The team ran an
experiment to move the offer to the shopping cart page that the user sees after
adding an item, showing simple math highlighting the savings the user would
receive, as shown in Figure 1.5 (Kohavi et al. 2014).

Since users adding an item to the shopping cart have clear purchase intent,
this offer displays at the right time. The controlled experiment demonstrated
that this simple change increased Amazon’s annual profit by tens of millions of
dollars.

Personalized Recommendations

Greg Linden at Amazon created a prototype to display personalized recom-
mendations based on items in the user’s shopping cart (Linden 2006, Kohavi,
Longbottom et al. 2009). When you add an item, recommendations come up;
add another item, new recommendations show up. Linden notes that while the
prototype looked promising, “a marketing senior vice-president was dead set
against it,” claiming it would distract people from checking out. Greg was
“forbidden to work on this any further.” Nonetheless, he ran a controlled
experiment, and the “feature won by such a wide margin that not having it
live was costing Amazon a noticeable chunk of change. With new urgency,
shopping cart recommendations launched.” Now multiple sites use cart
recommendations.

Speed Matters a LOT

In 2012, an engineer at Microsoft’s Bing made a change to the way JavaScript
was generated, which shortened the HTML sent to clients significantly,
resulting in improved performance. The controlled experiment showed a
surprising number of improved metrics. They conducted a follow-on
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18 1 Introduction and Motivation

experiment to estimate the impact on server performance. The result showed
that performance improvements also significantly improve key user metrics,
such as success rate and time-to-success, and each 10 millisecond performance
improvement (1/30th of the speed of an eye blink) pays for the fully loaded
annual cost of an engineer (Kohavi et al. 2013).

By 2015, as Bing’s performance improved, there were questions about
whether there was still value to performance improvements when the server
was returning results in under a second at the 95th percentile (i.e., for 95% of
the queries). The team at Bing conducted a follow-on study and key user
metrics still improve significantly. While the relative impact on revenue was
somewhat reduced, Bing’s revenue improved so much during the time that
each millisecond in improved performance was worth more than in the past;
every four milliseconds of improvement funded an engineer for a year! See
Chapter 5 for in-depth review of this experiment and the criticality of
performance.

Performance experiments were done at multiple companies with results
indicating how critical performance is. At Amazon, a 100-millisecond slow-
down experiment decreased sales by 1% (Linden 2006b, 10). A joint talk by
speakers from Bing and Google (Schurman and Brutlag 2009) showed the
significant impact of performance on key metrics, including distinct queries,
revenue, clicks, satisfaction, and time-to-click.

Malware Reduction

Ads are a lucrative business and “freeware” installed by users often contains
malware that pollutes pages with ads. Figure 1.6 shows what a resulting page
from Bing looked like to a user with malware. Note that multiple ads (high-
lighted in red) were added to the page (Kohavi et al. 2014).

Not only were Bing ads removed, depriving Microsoft of revenue, but low-
quality ads and often irrelevant ads displayed, providing a poor user experi-
ence for users who might not have realized why they were seeing so many ads.

Microsoft ran a controlled experiment with 3.8 million users potentially
impacted, where basic routines that modify the DOM (Document Object
Model) were overridden to allow only limited modifications from trusted
sources (Kohavi et al. 2014). The results showed improvements to all of Bing’s
key metrics, including Sessions per user, indicating that users visited more
often or churned less. In addition, users were more successful in their searches,
quicker to click on useful links, and annual revenue improved by several
million dollars. Also, page-load time, a key performance metric we previously
discussed, improved by hundreds of milliseconds for the impacted pages.
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Figure 1.6 Bing page when the user has malware shows multiple ads

Backend Changes

Backend algorithmic changes are often overlooked as an area to use controlled
experiments (Kohavi, Longbottom et al. 2009), but it can yield significant
results. We can see this both from how teams at Google, LinkedIn, and
Microsoft work on many incremental small changes, as we described above,
and in this example involving Amazon.

Back in 2004, there already existed a good algorithm for making
recommendations based on two sets. The signature feature for Amazon’s
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Figure 1.7 Amazon search for “24” with and without BBS

recommendation was ‘“People who bought item X bought item Y,” but this was
generalized to “People who viewed item X bought item Y” and “People who
viewed item X viewed item Y.” A proposal was made to use the same algorithm
for “People who searched for X bought item Y.” Proponents of the algorithm
gave examples of underspecified searches, such as ‘“24,” which most people
associate with the TV show starring Kiefer Sutherland. Amazon’s search was
returning poor results (left in Figure 1.7), such as CDs with 24 Italian Songs,
clothing for 24-month old toddlers, a 24-inch towel bar, and so on. The new
algorithm gave top-notch results (right in Figure 1.7), returning DVDs for the
show and related books, based on what items people actually purchased after
searching for “24.” One weakness of the algorithm was that some items surfaced
that did not contain the words in the search phrase; however, Amazon ran a
controlled experiment, and despite this weakness, this change increased
Amazon’s overall revenue by 3% — hundreds of millions of dollars.

Strategy, Tactics, and Their Relationship to Experiments

When the necessary ingredients for running online controlled experiments are
met, we strongly believe they should be run to inform organizational decisions
at all levels from strategy to tactics.

Strategy (Porter 1996, 1998) and controlled experiments are synergistic.
David Collis of Lean Strategy wrote that “rather than suppressing
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Strategy, Tactics, Their Relationship to Experiments 21

entrepreneurial behavior, effective strategy encourages it — by identifying the
bounds within which innovation and experimentation should take place”
(Collis 2016). He defines a lean strategy process, which guards against the
extremes of both rigid planning and unrestrained experimentation.

Well-run experiments with appropriate metrics complement business strat-
egy, product design, and improve operational effectiveness by making the
organization more data driven. By encapsulating strategy into an OEC, con-
trolled experiments can provide a great feedback loop for the strategy. Are the
ideas evaluated with experiments improving the OEC sufficiently? Alterna-
tively, surprising results from experiments can shine a light on alternative
strategic opportunities, leading to pivots in those directions (Ries 2011).
Product design decisions are important for coherency and trying multiple
design variants provides a useful feedback loop to the designers. Finally, many
tactical changes can improve the operational effectiveness, defined by Porter as
“performing similar activities better than rivals perform them” (Porter 1996).

We now review two key scenarios.

Scenario 1: You Have a Business Strategy and You
Have a Product with Enough Users to Experiment

In this scenario, experiments can help hill-climb to a local optimum based on
your current strategy and product:

e Experiments can help identify areas with high ROI: those that improve the
OEC the most, relative to the effort. Trying different areas with MVPs can
help explore a broader set of areas more quickly, before committing signifi-
cant resources.

e Experiments can also help with optimizations that may not be obvious to
designers but can make a large difference (e.g., color, spacing, performance).

e Experiments can help continuously iterate to better site redesigns, rather
than having teams work on complete site redesigns that subject users to
primacy effects (users are primed in the old feature, i.e., used to the way it
works) and commonly fail not only to achieve their goals, but even fail to
achieve parity with the old site on key metrics (Goward 2015, slides 22—24,
Rawat 2018, Wolf 2018, Laja 2019).

e Experiments can be critical in optimizing backend algorithms and infra-
structure, such as recommendation and ranking algorithms.

Having a strategy is critical for running experiments: the strategy is what
drives the choice of OEC. Once defined, controlled experiments help
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accelerate innovation by empowering teams to optimize and improve the OEC.
Where we have seen experiments misused is when the OEC is not properly
chosen. The metrics chosen should meet key characteristics and not be game-
able (see Chapter 7).

At our companies, not only do we have teams focused on how to run
experiments properly, but we also have teams focused on metrics: choosing
metrics, validating metrics, and evolving metrics over time. Metric evolution
will happen both due to your strategy evolving over time but also as you learn
more about the limitations of your existing metrics, such as CTR being too
gameable and needing to evolve. Metric teams also work on determining
which metrics measurable in the short term drive long-term objectives, since
experiments usually run over a shorter time frame. Hauser and Katz (1998)
wrote that “the firm must identify metrics that the team can affect today, but
which, ultimately, will affect the firm’s long-term goals” (see Chapter 7).

Tying the strategy to the OEC also creates Strategic Integrity (Sinofsky and
Iansiti 2009). The authors point out that “Strategic integrity is not about
crafting brilliant strategy or about having the perfect organization: It is about
getting the right strategies done by an organization that is aligned and knows
how to get them done. It is about matching top-down-directed perspectives
with bottom-up tasks.” The OEC is the perfect mechanism to make the strategy
explicit and to align what features ship with the strategy.

Ultimately, without a good OEC, you are wasting resources — think of experi-
menting to improve the food or lighting on a sinking cruise ship. The weight of
passenger safety term in the OEC for those experiments should be extremely
high — in fact, so high that we are not willing to degrade safety. This can be
captured either via high weight in the OEC, or, equivalently, using passenger
safety as a guardrail metric (see Chapter 21). In software, the analogy to the cruise
ship passenger safety is software crashes: if a feature is increasing crashes for the
product, the experience is considered so bad, other factors pale in comparison.

Defining guardrail metrics for experiments is important for identifying what
the organization is not willing to change, since a strategy also “requires you to
make tradeoffs in competing — to choose what not to do” (Porter 1996). The ill-
fated Eastern Air Lines flight 401 crashed because the crew was focused on a
burned-out landing gear indicator light, and failed to notice that the autopilot
was accidentally disengaged; altitude, a key guardrail metric, gradually
decreased and the plane crashed in the Florida Everglades in 1972, resulting
in 101 fatalities (Wikipedia contributors, Eastern Air Lines Flight 401 2019).

Improvements in operational efficiencies can provide long-term differenti-
ated advantage, as Porter noted in a section titled “Japanese Companies Rarely
have Strategies” (1996) and Varian noted in his article on Kaizen (2007).
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Scenario 2: You Have a Product, You Have a Strategy,
but the Results Suggest That You Need to Consider a Pivot

In Scenario 1, controlled experiments are a great tool for hill climbing. If you
think of the multi-dimensional space of ideas, with the OEC as the “height”
that is being optimized, then you may be making steps towards a peak. But
sometimes, either based on internal data about the rate of change or external
data about growth rates or other benchmarks, you need to consider a pivot:
jumping to a different location in the space, which may be on a bigger hill, or
changing the strategy and the OEC (and hence the shape of the terrain).

In general, we recommend always having a portfolio of ideas: most should
be investments in attempting to optimize “near” the current location, but a few
radical ideas should be tried to see whether those jumps lead to a bigger hill.
Our experience is that most big jumps fail (e.g., big site redesigns), yet there is
a risk/reward tradeoff: the rare successes may lead to large rewards that
compensate for many failures.

When testing radical ideas, how you run and evaluate experiments changes
somewhat. Specifically, you need to consider:

e The duration of experiments. For example, when testing a major Ul
redesign, experimental changes measured in the short term may be influ-
enced by primacy effects or change aversion. The direct comparison of
Treatment to Control may not measure the true long-term effect. In a two-
sided marketplace, testing a change, unless sufficiently large, may not
induce an effect on the marketplace. A good analogy is an ice cube in a
very cold room: small increases to room temperature may not be noticeable,
but once you go over the melting point (e.g., 32 Fahrenheit), the ice cube
melts. Longer and larger experiments, or alternative designs, such as the
country-level experiments used in the Google Ads Quality example above,
may be necessary in these scenarios (see also Chapter 23).

o The number of ideas tested. You may need many different experiments
because each experiment is only testing a specific tactic, which is a com-
ponent of the overall strategy. A single experiment failing to improve the
OEC may be due to the specific tactic being poor, not necessarily indicating
that the overall strategy is bad. Experiments, by design, are testing specific
hypotheses, while strategies are broader. That said, controlled experiments
help refine the strategy, or show its ineffectiveness and encourage a pivot
(Ries 2011). If many tactics evaluated through controlled experiments fail, it
may be time to think about Winston Churchill’s saying: “However beautiful
the strategy, you should occasionally look at the results.” For about two
years, Bing had a strategy of integrating with social media, particularly
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Facebook and Twitter, opening a third pane with social search results. After
spending over $25 million on the strategy with no significant impact to key
metrics, the strategy was abandoned (Kohavi and Thomke 2017). It may be
hard to give up on a big bet, but economic theory tells us that failed bets are
sunk costs, and we should make a forward-looking decision based on the
available data, which is gathered as we run more experiments.

Eric Ries uses the term “achieved failure” for companies that successfully,
faithfully, and rigorously execute a plan that turned out to have been utterly
flawed (Ries 2011). Instead, he recommends:

The Lean Startup methodology reconceives a startup’s efforts as experiments that
test its strategy to see which parts are brilliant and which are crazy. A true
experiment follows the scientific method. It begins with a clear hypothesis that
makes predictions about what is supposed to happen. It then tests those predictions
empirically.

Due to the time and challenge of running experiments to evaluate strategy,
some, like Sinofsky and lansiti (2009) write:

... product development process as one fraught with risk and uncertainty. These are
two very different concepts ... We cannot reduce the uncertainty — you don’t
know what you don’t know.

We disagree: the ability to run controlled experiments allows you to signifi-
cantly reduce uncertainty by trying a Minimum Viable Product (Ries 2011),
getting data, and iterating. That said, not everyone may have a few years to
invest in testing a new strategy, in which case you may need to make decisions
in the face of uncertainty.

One useful concept to keep in mind is EVI: Expected Value of Information
from Douglas Hubbard (2014), which captures how additional information can
help you in decision making. The ability to run controlled experiments allows
you to significantly reduce uncertainty by trying a Minimum Viable Product
(Ries 2011), gathering data, and iterating.

Additional Reading

There are several books directly related to online experiments and A/B tests
(Siroker and Koomen 2013, Goward 2012, Schrage 2014, McFarland 2012,
King et al. 2017). Most have great motivational stories but are inaccurate on
the statistics. Georgi Georgiev’s recent book includes comprehensive statis-
tical explanations (Georgiev 2019).
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The literature related to controlled experiments is vast (Mason et al. 1989,
Box et al. 2005, Keppel, Saufley and Tokunaga 1992, Rossi, Lipsey and
Freeman 2004, Imbens and Rubin 2015, Pearl 2009, Angrist and Pischke
2014, Gerber and Green 2012).

There are several primers on running controlled experiments on the web
(Peterson 2004, 76—78, Eisenberg 2005, 283—286, Chatham, Temkin and
Amato 2004, Eisenberg 2005, Eisenberg 2004); (Peterson 2005, 248—253,
Tyler and Ledford 2006, 213—219, Sterne 2002, 116—119, Kaushik 2006).

A multi-armed bandit is a type of experiment where the experiment traffic
allocation can be dynamically updated as the experiment progresses (Li et al.
2010, Scott 2010). For example, we can take a fresh look at the experiment
every hour to see how each of the variants has performed, and we can adjust
the fraction of traffic that each variant receives. A variant that appears to be
doing well gets more traffic, and a variant that is underperforming gets less.

Experiments based on multi-armed bandits are usually more efficient than
“classical” A/B experiments, because they gradually move traffic towards
winning variants, instead of waiting for the end of an experiment. While there
is a broad range of problems they are suitable for tackling (Bakshy, Balandal
and Kashin 2019), some major limitations are that the evaluation objective
needs to be a single OEC (e.g., tradeoff among multiple metrics can be simply
formulated), and that the OEC can be measured reasonably well between re-
allocations, for example, click-through rate vs. sessions. There can also be
potential bias created by taking users exposed to a bad variant and distributing
them unequally to other winning variants.

In December 2018, the three co-authors of this book organized the First
Practical Online Controlled Experiments Summit. Thirteen organizations,
including Airbnb, Amazon, Booking.com, Facebook, Google, LinkedIn, Lyft,
Microsoft, Netflix, Twitter, Uber, Yandex, and Stanford University, sent a total
of 34 experts, which presented an overview and challenges from breakout
sessions (Gupta et al. 2019). Readers interested in challenges will benefit from
reading that paper.
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Running and Analyzing Experiments
An End-to-End Example

The fewer the facts, the stronger the opinion
— Arnold Glasow

In Chapter 1, we reviewed what controlled experiments are and the importance
of getting real data for decision making rather than relying on intuition. The
example in this chapter explores the basic principles of designing, running, and
analyzing an experiment. These principles apply to wherever software is
deployed, including web servers and browsers, desktop applications, mobile
applications, game consoles, assistants, and more. To keep it simple and
concrete, we focus on a website optimization example. In Chapter 12, we
highlight the differences when running experiments for thick clients, such as
native desktop and mobile apps.

Setting up the Example

Our concrete example is a fictional online commerce site that sells widgets.
There are a wide range of changes we can test: introducing a new feature, a
change to the user interface (UI), a back-end change, and so on.

In our example, the marketing department wants to increase sales by
sending promotional emails that include a coupon code for discounts on the
widgets. This change is a potential business model change, as the company has
not previously offered coupons. However, an employee at the company
recently read about Dr. Footcare losing significant revenue after adding a
coupon code (Kohavi, Longbottom et al. 2009, section 2.1) and also read that
removing coupon codes is a positive pattern on GoodUILorg (Linowski 2018).
Given these external data, there is concern that adding the coupon code field to
checkout will degrade revenue, even if there are no coupons, that is, just the

26
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fact of users seeing this field will slow them down, and cause them to search
for codes, or even abandon.

We want to evaluate the impact of simply adding a coupon code field. We
can use a fake door or painted door approach (Lee 2013) — the analogy is
that we build a fake door or paint it on a wall and see how many people try
to open it. In this case, we implement the trivial change of adding a coupon
code field to the checkout page. We do not implement a true coupon code
system, as there are no codes available. Whatever the user enters, the system
says: “Invalid Coupon Code.” Our goal is simply to assess the impact on
revenue by having this coupon code field and evaluate the concern that it
will distract people from checking out. As this is a simple change, we will
test two UI implementations. It is common to test several Treatments
simultaneously to evaluate an idea versus an implementation. In this case,
the idea is adding coupon code, while the implementation is a specific UI
change.

This simple A/B test is a critical step in assessing the feasibility of the new
business model.

When translating this proposed UI change into a hypothesis, it is useful to
think about the online shopping process as a funnel, shown in Figure 2.1.
A customer starts at the home page, browses through a few widgets, adds a
widget to the cart, starts the purchase process, and finally completes a pur-
chase. Of course, the idea of a funnel is simplistic; customers rarely complete
the steps in a consistently linear fashion. There is a lot of back-and-forth swirl
between states as well as repeat visitors who skip intermediate steps. However,
this simple model is useful in thinking through experiment design and analysis,
as experiments commonly target improving a particular step in the funnel
(McClure 2007).

For our experiment, we are adding a coupon code field to the checkout page,
and we are testing two different Uls, as shown in Figure 2.2, and would like to
evaluate the impact (if any) on revenue. Our hypothesis is: “Adding a coupon
code field to the checkout page will degrade revenue.”

To measure the impact of the change, we need to define goal metrics, or
success metrics. When we have just one, we can use that metric directly as our
OEC (see Chapter 7). One obvious choice for this experiment might be
revenue. Note that even though we want to increase overall revenue, we do
not recommend using the sum of revenue itself, as it depends on the number of
users in each variant. Even if the variants are allocated with equal traffic, the
actual number of users may vary due to chance. We recommend that key
metrics be normalized by the actual sample sizes, making revenue-per-user a
good OEC.
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Figure 2.1 A user online shopping funnel. Users may not progress linearly
through a funnel, but instead skip, repeat or go back-and-forth between steps

The next critical question is to determine which users to consider in the
denominator of the revenue-per-user metric:

o All users who visited the site. This is valid; however, it is noisy because it
includes users who never initiated checkout, where the change was made.
We know that users who never initiated checkout could not be impacted by
our change. Excluding these users will result in a more sensitive A/B test
(see Chapter 20).

e Only users who complete the purchase process. This choice is incorrect,
as it assumes that the change will impact the amount purchased, not the
percentage of users who complete the purchase. If more users purchase,
revenue-per-user may drop even though total revenue increases.

o Only users who start the purchase process. This is the best choice, given
where the change is in the funnel. We include all potentially affected users,
but no unaffected users (users who never start checking out) who dilute our
results.
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Figure 2.2 (1) Control: the old checkout page. (2) Treatment one: coupon or gift
code field below credit card information (3) Treatment two: coupon or gift code as

a popup

Our more refined hypothesis becomes “Adding a coupon code field to the
checkout page will degrade revenue-per-user for users who start the purchase
process.”

Hypothesis Testing: Establishing Statistical Significance

Before we can design, run, or analyze our experiment, let us go over a few
foundational concepts relating to statistical hypothesis testing.

First, we characterize the metric by understanding the baseline mean value
and the standard error of the mean, in other words, how variable the estimate
of our metric will be. We need to know the variability to properly size our
experiment and calculate statistical significance during analysis. For most
metrics we measure the mean, but we can also choose other summary statistics,
such as percentiles. The sensitivity, or ability to detect statistically significant

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:54, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.004
https://www.cambridge.org/core

30 2 Running and Analyzing Experiments

differences, improves with lower standard errors of the mean. This can typic-
ally be achieved by allocating more traffic to the variants or running the
experiment longer because the number of users typically grows over time.
The latter, however, may not be as effective after the first couple of weeks as
unique user growth is sub-linear due to repeat users while some metrics
themselves have a “growing” variance over time (Kohavi et al. 2012).

When we run an experiment, instead of characterizing a metric for a single
sample, we instead have multiple samples. Specifically, in controlled experi-
ments, we have one sample for the Control and one sample for each Treat-
ment. We quantitatively test whether the difference between a pair of
Treatment and Control samples is unlikely, given the Null hypothesis that
the means are the same. If it is unlikely, we reject the Null hypothesis and
claim that the difference is statistically significant. Specifically, given revenue-
per-user estimates from the Control and Treatment samples, we compute the
p-value for the difference, which is the probability of observing such differ-
ence or more extreme assuming the Null hypothesis is true. We reject the Null
hypothesis and conclude that our experiment has an effect (or the result is
statistically significant) if the p-value is small enough. But what is small
enough?

The scientific standard is to use a p-value less than 0.05, meaning that if
there is truly no effect, we can correctly infer there is no effect 95 out of 100
times. Another way to examine whether the difference is statistically signifi-
cant is by checking whether the confidence interval overlaps with zero. A 95%
confidence interval is the range that covers the true difference 95% of the time,
and for fairly large sample sizes it is usually centered around the observed delta
between the Treatment and the Control with an extension of 1.96 standard
errors on each side. Figure 2.3 shows the equivalence of the two views.

Statistical power is the probability of detecting a meaningful difference
between the variants when there really is one (statistically, reject the null when
there is a difference). Practically speaking, you want enough power in your
experiment to be able to conclude with high probability whether your experi-
ment has resulted in a change bigger than what you care about. Usually, we get
more power when the sample size is larger. It is common practice to design
experiments for 80-90% power. Chapter 17 further discusses the statistical
details.

While “statistical significance” measures how likely the result you observe
or more extreme could have happened by chance assuming the null, not all
statistically significant results are practically meaningful. How big of a differ-
ence, in this case for revenue-per-user, actually matters to us from a business
perspective? In other words, what change is practically significant?
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Figure 2.3 Top: Using p-value to assess whether the observed delta is statistically
significant. If p-value is less than 0.05, we declare that the difference is statistic-
ally significant. Bottom: The equivalent view of using 95% confidence interval
[4—1.960,4+1.96 0] to assess statistical significance. If zero lies outside of the
confidence interval, we declare significance

Establishing this substantive boundary is important for understanding whether
the difference is worth the costs of making the change. If your website
generates billions of dollars, like Google and Bing, then a 0.2% change is
practically significant. In comparison, a startup may consider even a 2%
change too small, because they are looking for changes that improve by 10%
or more. For our example, let’s state that from a business perspective, a 1% or
larger increase in revenue-per-user is a change that matters or is practically
significant.
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Designing the Experiment

We are now ready to design our experiment. We have a hypothesis, a practical
significance boundary, and we have characterized our metric. We will use this
set of decisions to finalize the design:

1. What is the randomization unit?

2. What population of randomization units do we want to target?
3. How large (size) does our experiment need to be?

4. How long do we run the experiment?

For now, let’s assume that users is our randomization unit. Chapter 14 dis-
cusses alternatives, but users is by far the most common choice.

Targeting a specific population means that you only want to run the experi-
ment for users with a particular characteristic. For example, you are testing out
new text but only have the new text in a few languages; in this case, you could
only target users with their interface locale set to those languages. Other
common targeting attributes include geographic region, platform, and device
type. Our example assumes we are targeting all users.

The size of the experiment (for us, the number of users) has direct impact on
the precision of the results. If you want to detect a small change or be more
confident in the conclusion, run a larger experiment with more users. Here are
some changes we might consider:

o If we use purchase indicator (i.e., did the user purchase yes/no, without
regard to the purchase amount) instead of using revenue-per-user as our
OEC, the standard error will be smaller, meaning that we will not need to
expose the experiment to as many users to achieve the same sensitivity.

e If we increase our practical significance level, saying that we no longer care
about detecting a 1% change, but only bigger changes, we could reduce the
sample size because bigger changes are easier to detect.

e If we want to use a lower p-value threshold such as 0.01 to be more certain
that a change occurred before we reject the Null hypothesis, we need to
increase the sample size.

Here are a few other considerations when deciding experiment size:

e How safe is the experiment? For large changes where you are uncertain
about how users might react, you may want to start with a smaller propor-
tion of the users first. This rationale should not impact the choice of the final
experiment size but may instead impact the ramp-up tactics (see Chapter 15
for more details).
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e Does this experiment need to share traffic with other experiments, and if so,
how do you balance traffic requirements? At a high level, if you have other
changes to test, you can choose to either run those changes at the same time
or sequentially. If you must divide traffic among several simultaneous tests,
each test will end up with a smaller amount of traffic. In Chapter 4, we talk
about running tests as a single layer or overlapping, and more importantly,
how to build a proper infrastructure to scale all experiments.

Another big question is how long to run the experiment. Here are other factors
to consider:

o More users: In the online experiments, because users trickle into experi-
ments over time, the longer the experiment runs, the more users the experi-
ment gets. This usually results in increased statistical power (exceptions
happen if the metric being measured accumulates, e.g., number of sessions,
and the variance also increases; see Chapter 18 for details). The user
accumulation rate over time is also likely to be sub-linear given that the
same user may return: if you have N users on day one, you will have fewer
than 2N users after two days since some users visit on both days.

e Day-of-week effect: You may have a different population of users on
weekends than weekdays. Even the same user may behave differently. It
is important to ensure that your experiment captures the weekly cycle. We
recommend running experiments for a minimum of one week.

e Seasonality: There can be other times when users behave differently that
are important to consider, such as holidays. If you have a global user base,
US as well as non-US holidays may have an effect. For example, selling gift
cards may work well during the Christmas season but not as well during
other times of the year. This is called external validity; the extent to which
the results can be generalized, in this case to other periods of time.

o Primacy and novelty effects: There are experiments that tend to have a
larger or smaller initial effect that takes time to stabilize. For example, users
may try a new flashy button and discover it is not useful, so clicks on the
button will decrease over time. On the other hand, features that require
adoption take time to build an adopter base.

Our experiment design is now as follows:

1. The randomization unit is a user.

2. We will target all users and analyze those who visit the checkout page.

3. To have 80% power to detect at least a 1% change in revenue-per-user, we
will conduct a power analysis to determine size.
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4. This translates into running the experiment for a minimum of four days
with a 34/33/33% split among Control/Treatment one/Treatment two. We
will run the experiment for a full week to ensure that we understand the
day-of-week effect, and potentially longer if we detect novelty or primacy
effects.

In general, overpowering an experiment is fine and even recommended, as
sometimes we need to examine segments (e.g., geographic region or platform)
and to ensure that the experiment has sufficient power to detect changes on
several key metrics. For example, we may have enough power to detect
revenue impact across all users, but not enough power if we want to look at
users in Canada only. Also note that while we have chosen approximately
equal sizes for Control and Treatments, if the number of Treatments increases,
you may consider increasing the size of the Control to be larger than that of
Treatments (see Chapter 18 for more discussion).

Running the Experiment and Getting Data

Now let us run the experiment and gather the necessary data. Here we give you
a brief overview of the pieces involved and provide more detail in Scaling
Experimentation: Digging into Variant Assignment in Chapter 4.

To run an experiment, we need both:

e Instrumentation to get logs data on how users are interacting with your site
and which experiments those interactions belong to (see Chapter 13).

e Infrastructure to be able to run an experiment, ranging from experiment
configuration to variant assignment. See Chapter 4 Experimentation Plat-
form and Culture for more detail.

Once you have run the experiment and gathered the logs data with the
necessary instrumentation, it is time to process the data, compute the summary
statistics, and visualize the results (see Chapter 4 and Chapter 16).

Interpreting the Results

We have data from our experiment! Before we look at the revenue-per-user
results, let’s run some sanity checks to make sure the experiment was run

properly.
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Table 2.1 Results on revenue-per-user from the checkout experiment.

Revenue-per- Revenue-
user, per-user, Confidence
Treatment Control Difference  p-value Interval
Treatment $3.12 $3.21 -$0.09 0.0003 [4.3%,
One vs. (-2.8%) -1.3%]
Control
Treatment $2.96 $3.21 -$0.25 1.5e-23 [-9.3%,
Two vs. (=7.8%) 6.3%]
Control

There are many ways for bugs to creep in that would invalidate the experi-
ment results. To catch them, we’ll look at the guardrail metrics or invariants.
These metrics should not change between the Control and Treatment. If they
change, any measured differences are likely the result of other changes we
made rather than the feature being tested.

There are two types of invariant metrics:

1. Trust-related guardrail metrics, such as expecting the Control and Treat-
ment samples to be sized according to the configuration or that they have
the same cache-hit rates.

2. Organizational guardrail metrics, such as latency, which are important to
the organization and expected to be an invariant for many experiments. In
the checkout experiment, it would be very surprising if latency changed.

If these sanity checks fail, there is probably a problem with the underlying
experiment design, infrastructure, or data processing. See Chapter 21 for more
information.

After running the sanity checks based on the guardrail metrics, we are ready
to look at the results (Table 2.1).

Because the p-value for both Treatments is less than 0.05, we reject the Null
hypothesis that Treatment and Control have the same mean.

So, what does this mean? Well, it means that we confirmed the pattern that
adding a coupon code to the UI will decrease revenue. If we dig into the
numbers further, the results indicate that the decrease is because fewer users
complete the purchase process. Thus, any marketing email that sends out
coupon codes needs to recoup not just the implementation cost of adding
coupon processing and maintenance, but also the negative impact of adding
the coupon code in the first place. Since the marketing model estimated a small
revenue increase for the targeted users, but the A/B test shows a significant
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revenue decrease to all users, the decision is made to scrap the idea of
introducing promotion codes. A/B testing with a painted door saved us a large
effort!

From Results to Decisions

The goal of running A/B tests is to gather data to drive decision making. A lot
of work goes into ensuring that our results are repeatable and trustworthy so
that we make the right decision. Let’s walk through the decision-making
process for a few different cases that could come up.

For each case, we have the results from the experiment, and our goal is
to translate the results into a launch/no-launch decision. The reason to stress
the decision-making part is because a decision needs to take into consideration
both the conclusion from the measurement and the broader context, such as:

e Do you need to make tradeoffs between different metrics? For example, if
user engagement goes up, but revenue goes down, should you launch?
Another example is if CPU utilization increases, the cost of running your
service may outweigh the benefit of the change.

e What is the cost of launching this change? This includes both the:

o Cost to fully build out the feature before launch. Some features may have
been fully built before experimenting. In those cases, the cost of going
from 1% to 100% launch is zero. This is not always the case. As in our
example, implementing the painted door was cheap, but the cost of
implementing a full coupon system is expensive.

o Cost for ongoing engineering maintenance after launch, since it may be
more costly to maintain new code. New code tends to have more bugs and
be less well tested for edge cases. If the new code introduces more com-
plexity, it may also add friction and cost to build new changes on top of it.

If the cost is high, you must ensure that the expected gain can cover it.
In those situations, make sure that your practical significance boundary is
high enough to reflect that. Conversely, if the cost is low or even zero,
you may choose to launch any change that is positive, in other words,
your practical significance boundary is low.

o What is the downside of making wrong decisions? Not all decisions are
equal and not all mistakes are equal. There may be no downside of
launching a change that has no impact, but the opportunity cost can be high
if we forego a change that has impact, and vice versa. For example, you may
be testing two possible headline offers on your site, and the offer itself will
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0

Figure 2.4 Examples for understanding statistical and practical significance when
making launch decisions. The practical significance boundary is drawn as two
dashed lines. The estimated difference for each example result is the black box,
together with its confidence interval

only stay up for a few days. In that case, the downside of making the wrong
decision is low because the change has a short lifespan. In this case, you
may be willing to lower the bar for both statistical and practical significance.

You need to take these contexts into consideration as you construct your
statistical and practical significance thresholds. These thresholds are critical
as we move from the results of the experiment to a decision or action.
Assuming we have updated the thresholds prior to the start of the experiment
to reflect the broader context, let us walk through the examples in Figure 2.4 to
illustrate how to use these thresholds to guide our decisions.

1. The result is not statistically significant. It is also clear that there is no
practical significance. This leads to an easy conclusion that the change does
not do much. You may either decide to iterate or abandon this idea.
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2. The result is statistically and practically significant. Again, an easy deci-
sion: launch!

3. The result is statistically significant but not practically significant. In this
case, you are confident about the magnitude of change, but that magnitude
may not be sufficient to outweigh other factors such as cost. This change
may not be worth launching.

4. Consider this example neutral, like our first example; however, the confi-
dence intervals are outside of what is practically significant. If you run an
experiment and find out it could either increase or decrease revenue by
10%, would you really accept that experiment and say that change is
neutral? It’s better to say you do not have enough power to draw a strong
conclusion, and it is also such that we do not have enough data to make any
launch decision. For this result, we recommend running a follow-up test
with more units, providing greater statistical power.

5. The result is likely practically significant but not statistically significant. So
even though your best guess is that this change has an impact you care
about, there is also a good chance that there is no impact at all. From a
measurement perspective, the best recommendation would be to repeat this
test but with greater power to gain more precision in the result.

6. The result is statistically significant, and likely practically significant. Like
5, it is possible that the change is not practically significant. Thus here, like
the prior example, we suggest repeating the test with more power. From a
launch/no-launch decision, however, choosing to launch is a reasonable
decision.

The key thing to remember is that there will be times you might have to decide
even though there may not be clear answer from the results. In those situations,
you need to be explicit about what factors you are considering, especially how
they would translate into practical and statistical significance boundaries. This
will serve as the basis for future decisions versus simply a local decision.
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3

Twyman’s Law and Experimentation
Trustworthiness

Twyman’s law, perhaps the most important single law in the whole of
data analysis. . . The more unusual or interesting the data, the more likely
they are to have been the result of an error of one kind or another

— Catherine Marsh and Jane Elliott (2009)

Twyman’s Law: “Any figure that looks interesting or different is
usually wrong”
— A.S.C. Ehrenberg (1975)

Twyman’s Law: “Any statistic that appears interesting is almost
certainly a mistake”
— Paul Dickson (1999)

William Anthony Twyman was a UK radio and television audience measure-
ment veteran (MR Web 2014) credited with formulating Twyman’s law,
although he apparently never explicitly put it in writing, and multiple variants
of it exist, as shown in the above quotations.

When we see a surprisingly positive result, such as a significant improve-
ment to a key metric, the inclination is to build a story around it, share it, and
celebrate. When the result is surprisingly negative, the inclination is to find
some limitation of the study or a minor flaw and dismiss it.

Experience tells us that many extreme results are more likely to be the result
of an error in instrumentation (e.g., logging), loss of data (or duplication of
data), or a computational error.

To increase trust in experiment results, we recommend a set of tests and
practices to indicate that something may be wrong with the results. In data-
bases, there are integrity constraints; in defensive programming, we are
encouraged to write assert ()s to validate that constraints hold. In experi-
mentation, we can run tests that check for underlying issues, similar to asserts:

39
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if every user should see either Control or Treatment from a certain time, then
having many users in both variants is a red flag; if the experiment design calls
for equal percentages in the two variants, then large deviations that are
probabilistically unlikely should likewise raise questions. Next, we share some
great examples of findings that fit Twyman’s law, and then discuss what you
can do to improve the trustworthiness of controlled experiments.

Misinterpretation of the Statistical Results

Here are several common errors in interpreting the statistics behind controlled
experiments.

Lack of Statistical Power

In our framework of Null Hypothesis Significance Testing (NHST), we typic-
ally assume that there is no difference in metric value between Control and
Treatment (the Null hypothesis) and reject the hypothesis if the data presents
strong evidence against it. A common mistake is to assume that just because a
metric is not statistically significant, there is no Treatment effect. It could very
well be that the experiment is underpowered to detect the effect size we are
seeing, that is, there are not enough users in the test. For example, an
evaluation of 115 A/B tests at GoodUILorg suggests that most were underpow-
ered (Georgiev 2018). This is one reason that it is important to define what is
practically significant in your setting (see Chapter 2) and ensure that you have
sufficient power to detect a change of that magnitude or smaller.

If an experiment impacts only a small subset of the population, it is
important to analyze just the impacted subset; even a large effect on a small
set of users could be diluted and not be detectable overall (see Chapter 20 and
Lu and Liu (2014)).

Misinterpreting p-values

P-value is often misinterpreted. The most common interpretation error is the
belief that the p-value represents the probability that the average metric value
in Control is different from the average metric value in Treatment, based on
data in a single experiment.

The p-value is the probability of obtaining a result equal to or more extreme
than what was observed, assuming that the Null hypothesis is true. The
conditioning on the Null hypothesis is critical.
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Here are some incorrect statements and explanations from A Dirty Dozen:
Twelve P-Value Misconceptions (Google Website Optimizer 2008):

1. Ifthe p-value = .05, the Null hypothesis has only a 5% chance of being true.
The p-value is calculated assuming that the Null hypothesis is true.

2. A non-significant difference (e.g., p-value >.05) means there is no differ-
ence between groups.

The observed results are consistent with the Null hypothesis of zero
Treatment effect and a range of other values. When confidence intervals
are shown for a typical controlled experiment, then it includes zero. This
does not mean that zero is more likely than other values in the confidence
interval. It could very well be that the experiment is under-powered.

3. P-value = .05 means that we observed data that would occur only 5% of the
time under the Null hypothesis.

This is incorrect by the definition of p-value above, which includes equal
or more extreme values than what was observed.

4. p-value = .05 means that if you reject the Null hypothesis, the probability of
a false positive is only 5%.

This is like the first example, but harder to see. The following example
might help: Suppose you are trying to transmute lead to gold by subjecting
the lead to heat and pressure and pouring elixirs on it. You measure the
amount of “goldliness” in the resulting concoction, a noisy measurement.
Since we know that chemical Treatments can’t change the atomic number
of lead from 82 to 79, any rejection of the Null hypothesis (of no change)
would be false, so 100% of rejections are false positives, regardless of
the p-value. To compute the false positive rate, that is, when the p-value is
< 0.05 and yet the Null Hypothesis is true (note, conjunction, not condi-
tioned on the Null hypothesis being true), we could use Bayes Theorem and
would require some prior probability.

Even the above common definition of p-value, which assumes that the Null
hypothesis is true, is not explicitly stating other assumptions explicitly, such as
how the data was collected (e.g., randomly sampled) and what assumptions the
statistical tests make. If an intermediate analysis was done, which impacted the
choice of analysis to present, or if a p-value was selected for presentation because of
its small size, then these assumptions are clearly violated (Greenland et al. 2016).

Peeking at p-values

When running an online controlled experiment, you could continuously moni-
tor the p-values. In fact, early versions of the commercial product Optimizely

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:54, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.005


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.005
https://www.cambridge.org/core
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encouraged this (Johari et al. 2017). Such multiple hypothesis testing results in
significant bias (by 5—10x) in declaring results to be statistically significant.
Here are two alternatives:

1. Use sequential tests with always valid p-values, as suggested by Johari et al.
(2017), or a Bayesian testing framework (Deng, Lu and Chen, Continuous
Monitoring of A/B Tests without Pain: Optimal Stopping in Bayseian
Testing 2016).

2. Use a predetermined experiment duration, such as a week, for the deter-
mining statistical significance.

Optimizely implemented a solution based on the first method, whereas the
experimentation platforms being used at Google, LinkedIn, and Microsoft use
the second.

Multiple Hypothesis Tests

The following story comes from the fun book, What is a p-value anyway?
(Vickers 2009):

Statistician: Oh, so you have already calculated the p-value?

Surgeon: Yes, I used multinomial logistic regression.
Statistician: Really? How did you come up with that?
Surgeon: I tried each analysis on the statistical software drop-down

menus, and that was the one that gave the smallest p-value.

The multiple comparisons problem (Wikipedia contributors, Multiple Compari-
sons problem 2019) is a generalization of peeking described above. When there
are multiple tests, and we choose the lowest p-value, our estimates of the p-value
and the effect size are likely to be biased. This is manifested in the following:

1. Looking at multiple metrics.

2. Looking at p-values across time (peeking as noted above).

3. Looking at segments of the population (e.g., countries, browser type,
heavy/light, new/tenured).

4. Looking at multiple iterations of an experiment. For example, if the experi-
ment truly does nothing (an A/A), running it 20 times may result in a
p-value smaller than 0.05 by chance.

False Discovery Rate (Hochberg and Benjamini 1995) is a key concept to deal
with multiple tests (see also Chapter 17).
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Threats to Internal Validity 43

Confidence Intervals

Confidence intervals, loosely speaking, quantify the degree of uncertainty in
the Treatment effect. The confidence level represents how often the confidence
interval should contain the true Treatment effect. There is a duality between
p-values and confidence intervals. For the Null hypothesis of no-difference
commonly used in controlled experiments, a 95% confidence interval of the
Treatment effect that does not cross zero implies that the p-value is < 0.05.

A common mistake is to look at the confidence intervals separately for the
Control and Treatment, and assume that if they overlap, the Treatment effect is
not statistically different. That is incorrect, as shown in Statistical Rules of
Thumb (van Belle 2008, section 2.6). Confidence intervals can overlap as
much as 29% and yet the delta will be statistically significant. The opposite,
however, is true: if the 95% confidence intervals do not overlap, then the
Treatment effect is statistically significant with p-value < 0.05.

Another common misunderstanding about confidence intervals is the belief
that the presented 95% confidence interval has a 95% chance of containing the
true Treatment effect. For a specific confidence interval, the true Treatment
effect is either 100% within it, or 0%. The 95% refers to how often the 95%
confidence intervals computed from many studies would contain the true
Treatment effect (Greenland et al. 2016); see Chapter 17 for more details.

Threats to Internal Validity

Internal validity refers to the correctness of the experimental results without
attempting to generalize to other populations or time periods. Here are some
common threats:

Violations of SUTVA

In the analysis of controlled experiments, it is common to apply the Stable Unit
Treatment Value Assumption (SUTVA) (Imbens and Rubin 2015), which
states that experiment units (e.g., users) do not interfere with one another.
Their behavior is impacted by their own variant assignment, and not by the
assignment of others. The assumption could clearly be violated in settings,
including the following:

* Social networks, where a feature might spillover to a user’s network.
* Skype (a communication tool), where peer-to-peer calls can violate SUTVA.
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e Document authoring tools (e.g., Microsoft Office and Google Docs) with
co-authoring support.

* Two-sided marketplaces (such as ad auctions, Airbnb, eBay, Lift, or Uber)
can violate SUTVA through the “other” side. For example, lowering prices
for Treatment has impact on Controls during auctions.

* Shared resources (such as CPU, storage, and caches) can impact SUTVA
(Kohavi and Longbotham 2010). If the Treatment leaks memory and causes
processes to slow down due to garbage collection and possibly swapping of
resources to disk, all variants suffer. In an experiment we ran, the Treatment
crashed the machine in certain scenarios. Those crashes also took down
users who were in Control, so the delta on key metrics was not different—
both populations suffered similarly.

See Chapter 22 for ways to address some of these violations.

Survivorship Bias

Analyzing users who have been active for some time (e.g., two months)
introduces survivorship bias. A great example of this problem and the biases
it introduces comes from World War II, when there was a decision to add
armor to bombers. Recordings were made about where the planes took the
most damage, and the military naturally wanted to add armor where the planes
were hit the most. Abraham Wald pointed out that these were the worst places
to add armor. Bullet holes were almost uniformly distributed, so armor should
be added to the places where there were no bullet holes because bombers that
were hit in those places. . . never made it back to be inspected (Denrell 2005,
Dmitriev, et al. 2016).

Intention-to-Treat

In some experiments, there is non-random attrition from the variants. For
example, in medical settings, patients in a Treatment may stop taking a
medication if it has side effects. In the online world, you may offer all
advertisers the opportunity to optimize their ad campaign, but only some
advertisers choose to do the suggested optimization. Analyzing only those
who participate, results in selection bias and commonly overstates the Treat-
ment effect. Intention-to-treat uses the initial assignment, whether it was
executed or not. The Treatment effect we are measuring is therefore based
on the offer, or intention to treat, not whether it was actually applied.
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In display advertising and e-mail marketing, we do not observe the Control
group exposure and there are techniques proposed to address this motivated by
intent-to-treat (Barajas et al. 2016).

Sample Ratio Mismatch (SRM)

If the ratio of users (or any randomization unit) between the variants is not
close to the designed ratio, the experiment suffers from a Sample Ratio
Mismatch (SRM). For example, if the experiment design is for a ratio of
one-to-one (equally sized Control and Treatment), then deviations in the actual
ratio of users in an experiment likely indicate a problem (see Chapter 21) that
requires debugging. We share some examples below.

With large numbers, a ratio smaller than 0.99 or larger than 1.01 for a design
that called for 1.0 more than likely indicates a serious issue. The experimen-
tation system should generate a strong warning and hide any scorecards and
reports, if the p-value for the ratio is low (e.g., below 0.001).

As defined earlier, the p-value is the probability of obtaining a result equal to
or more extreme than what was observed, assuming that the Null hypothesis is
true. If the experiment design was for equal allocations to both variants, then
by design you should get a ratio close to 1.0, that is, the Null hypothesis should
be true. The p-value thus represents the probability that the ratio we observed,
or more extreme, is consistent with our experimentation system’s design. This
simple test has identified numerous issues in experiments, many that looked
either great or terrible initially and invoked Twyman’s law. Here are some
other examples:

* Browser redirects (Kohavi and Longbotham 2010).

A very common and practical mechanism to implement an A/B test is to

redirect the Treatment to another page. Like many ideas, it is simple, elegant,

and wrong; several different attempts have shown that this consistently
causes an SRM. There are several reasons:

a. Performance differences. Users in the Treatment group suffer an extra
redirect, which may appear fast in the lab, but delays for users may be
significant, on the order of hundreds of milliseconds, which has signifi-
cant impact on key metrics (see Chapter 5).

b. Bots. Robots handle redirects differently: some may not redirect on the
http-equiv="REFRESH” meta tag; some will tag this as a new page
worthy of deep crawling and crawl it more often.

c. Redirects are asymmetric. When users are redirected to the Treatment
page, they may bookmark it or pass a link to their friends. In most
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implementations, the Treatment page does not check that the user should

really have been randomized into the Treatment, so this causes

contamination.

The lesson here is to avoid redirects in implementations and prefer a
server-side mechanism. When that is not possible, make sure that both
Control and Treatment have the same “penalty,” that is, redirect both the
Control and Treatment.

* Lossy instrumentation (Kohavi and Longbotham 2010, Kohavi, Messner
et al. 2010, Kohavi et al. 2012, Zhao et al. 2016)

Click tracking is typically done using web beacons (typically a 1x1 GIF
sent to the server to signal a click), which is known to be lossy (i.e., not
100% of clicks are properly recorded). This is not normally an issue, as the
loss is similar for all variants, but sometimes the Treatment can impact the
loss rate, making low-activity users (e.g., those who only had a single click)
appear at a different rate and cause an SRM. When the web beacon is placed
in a different area of the page, timing differences will skew the
instrumentation.

¢ Residual or carryover effects

New experiments usually involve new code and the bug rate tends to be
higher. It is common for a new experiment to cause some unexpected
egregious issue and be aborted or kept running for a quick bug fix. After
the bug is fixed, the experiment continues, but some users were already
impacted. In some cases, that residual effect could be severe and last for
months (Kohavi et al. 2012, Lu and Liu 2014). This is why it is important to
run pre-experiment A/A tests (see Chapter 19) and proactively re-randomize
users, recognizing that in some cases the re-randomization breaks the user
consistency, as some users bounce from one variant to another.

The opposite could also be true. At LinkedIn, a new version of the People
You May Know algorithm was evaluated and turned out to be highly benefi-
cial, increasing user visits. When the experiment was stopped and restarted,
there was a significant carryover effect from the prior experiment, enough to
create an SRM and invalidate the results (Chen, Liu and Xu 2019).

Residual information in browser cookies can impact experiments. Take,
for example, an educational campaign that shows a message to users in
Treatment, but in order to avoid bothering users, the message is shown only
three times. The implementation uses a browser cookie that counts the
number of times the message was shown. If the experiment is restarted,
some Treatment users will have the cookie with a count > 0, and thus will
either see fewer impressions or none at all, diluting the Treatment effect or
creating an SRM (Chen et al. 2019).
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* Bad hash function for randomization
Zhao et al. (2016) describe how Treatment assignment was done at Yahoo!
using the Fowler-Noll-Vo hash function, which sufficed for single-layer
randomization, but which failed to properly distribute users in multiple
concurrent experiments when the system was generalized to overlapping
experiments. Cryptographic hash functions like MDS5 are good (Kohavi et al.
2009) but slow; a non-cryptographic function used at Microsoft is Jenkins
SpookyHash (www.burtleburtle.net/bob/hash/spooky.html).

* Triggering impacted by Treatment
It is common to only trigger a segment of users into an experiment. For
example, you may only trigger users in a certain country, say the US. These
users are then randomly split into the variants.

If triggering is done based on attributes that are changing over time, then
you must ensure that no attributes used for triggering could be impacted by
the Treatment. For example, assume you run an e-mail campaign that
triggers for users who have been inactive for three months. If the campaign
is effective, those users become active and the next iteration of the campaign
could have an SRM.

e Time-of-Day Effects
Let’s demonstrate this again using an e-mail campaign setup as an A/B test
with different e-mail body text for each variant. In the real example, users
were properly randomized into equally sized Control and Treatment groups,
yet the e-mail open rates, which should be approximately the same, showed
up as an SRM.

A long investigation found that the open times clustered around different
time periods, which led to the conjecture, later confirmed, that due to ease of
implementation, the e-mails were first sent to Control users and then to
Treatment users—the first group received the e-mails during work hours,
whereas the second group received them after work.

* Data pipeline impacted by Treatment.
The MSN portal (www.msn.com) has an Info Pane area on the page with
multiple “slides” that rotate and a dot that indicates each slide (see arrow on
Figure 3.1) (Kohavi 2016).

A key component of the MSN OEC is clicks-per-user, which represents
user engagement. The team ran an experiment where the Treatment
increased the number of slides in the Info Pane from 12 to 16.

Initial results showed a significant reduction in user engagement for the
Treatment, but the experiment had an SRM: the ratio was 0.992 instead of 1.0.
With over 800,000 users in each variant, the p-value of such a split was
0.0000007, which meant that the probability of such a split happening by
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Figure 3.1 MSN portal example

chance, given that the design was for an equal split, was extremely unlikely.
The investigation discovered that because user engagement increased in the
Treatment, some of the most heavily engaged users were classified as bots and
removed from analysis. After correcting this bot filtering, the results showed
the reverse Treatment effect: user engagement increased by 3.3% in the
Treatment!

Bot filtering is a serious problem, especially for search engines. For Bing, over
50% of US traffic is from bots, and that number is higher than 90% in China
and Russia.

An SRM check is critical. Even a small imbalance can cause a reversal in the
Treatment effect, as the last example shows. SRMs are commonly due to
missing users (generally, experiment units) that are either extremely good,
such as heavy users, or extremely bad, those users with no click count. This
demonstrates that even though the population difference appears small, it can
significantly skew the results. A paper on diagnosing SRMs was recently
published (Fabijan et al. 2019).

Threats to External Validity

External validity refers to the extent to which the results of a controlled
experiment can be generalized along axes such as different populations (e.g.,
other countries, other websites) and over time (e.g., will the 2% revenue
increase continue for a long time or diminish?).
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Generalizations across populations are usually questionable; features that
work on one site may not work on another, but the solution is usually easy:
rerun the experiment. For example, successful experiments in the United States
are typically tested in other markets instead of assuming the results will
generalize.

Generalizations across time are harder. Sometimes a holdout experiment is
left running for months to assess the long-term effects (Hohnhold, O’Brien and
Tang 2015). Chapter 19 discusses how to address long-term effects. Two key
threats to external validity on a time-basis are primacy effects and novelty
effects.

Primacy Effects

When a change is introduced, users may need time to adopt, as they are primed
in the old feature, that is, used to the way it works. Machine-learning algo-
rithms may also learn better models and depending on the update cycle, this
may take time.

Novelty Effects

Novelty effect, or newness effect, is an un-sustained effect. When you intro-
duce a new feature, especially one that’s easily noticed, initially it attracts users
to try it. If users don’t find the feature useful, repeat usage will be small.
A Treatment may appear to perform well at first, but the Treatment effect will
quickly decline over time.

An example of something that we are not looking for is one told in Yes!:
50 Scientifically proven ways to be Persuasive (Goldstein, Martin and Cialdini
2008). In that book, the authors discuss how Colleen Szot authored a television
program that shattered a nearly 20-year sales record for a home-shopping
channel. Szot changed three words in a standard infomercial line that caused
a huge increase in the number of people who purchased her product: instead of
the all-too-familiar “Operators are waiting, please call now,” it was “If oper-
ators are busy, please call again.” The authors explain that this is social proof:
viewers think “If the phone lines are busy, then other people, like me, who are
also watching this infomercial are calling, too.”

Ploys, such as the above, have a short shelf life if users recognize that it is
used regularly. In a controlled experiment, the analysis will show an effect that
quickly diminishes.

Another example is shown in Figure 3.2. The MSN website had a stripe at
the top that looked like this (Dmitriev et al. 2017):
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Figure 3.2 MSN page with Outlook.com link
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Figure 3.3 MSN page changed to use link to Outlook application
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Figure 3.4 Phone ad with fake hair, hoping you’ll swipe it off and click-through
by mistake

Microsoft changed the Outlook.com link and icon to directly open the
Outlook Mail application (Figure 3.3), which gives users a richer, better
e-mail experience.

As expected, the experiment showed that more users in Treatment used the
Mail app relative to Control, but there was no expectation that the click-
through rate would increase. Surprisingly though, there was an extremely large
increase of 28% in the number of clicks on that link in Treatment relative to
Control. Were users liking the Mail app more and using it more frequently?
No. The investigation showed that users were confused that Outlook.com did
not open and clicked the link multiple times.

Finally, Chinese sneaker manufacturer Kaiwei Ni had an Instagram ad that
showed up on phones with a fake stray hair as shown in Figure 3.4. Users were
tricked into swiping on the ad to remove the hair, and many of them clicked
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through. The novelty effect was likely significant here. More than that, the ad

was not only removed from Instagram, but the account was disabled (Tiffany
2017).

Detecting Primacy and Novelty Effects

An important check for primacy and novelty effects is to plot usage over time
and see whether it’s increasing or decreasing. Take the above MSN example,
the percentage of users clicking the Mail link clearly decreased over time, as
shown in the graph in Figure 3.5.

The standard analysis of experiments assumes that the Treatment effect is
constant over time. This kind of trend is a red flag that indicates a violation of
the assumptions. Such experiments need to run longer to determine when the
Treatment effect stabilizes. In many cases, and stressed in this example, the
insight is enough to declare the idea bad. This approach is simple and effective
in most cases, but we must warn you that there are some caveats to watch out
for, especially if you do run the experiment a long time (See Chapter 23).

One additional option to highlight possible novelty/primacy effects is to take
the users who appeared in the first day or two (as opposed to all users over
time) and plot the treatment effect for them over time.
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Figure 3.5 MSN user engagement decreasing over time
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Segment Differences

Analyzing a metric by different segments can provide interesting insights and
lead to discoveries, for which we sometimes invoke Twyman’s law and
discover a flaw or new insight to help with future iterations of an idea. These
are advanced tests with an example that you can address in the later maturity
phases of your experimentation system.

What are good segments? Here are several:

* Market or country: some features work better in some countries; sometimes
an underperforming feature is the result of poor translation to another
language, that is, localization.

¢ Device or platform: is the user interface on a browser, desktop, or mobile
phone? Which mobile platform are they using: iOS or Android? Sometimes
the browser version can help identify JavaScript bugs and incompatibilities.
On mobile phones, the manufacturers (e.g., Samsung, Motorola) provide
add-ons that can cause features to fail.

* Time of day and day of week: plotting effects over time can show interesting
patterns. Users on weekends can be different in many characteristics.

* User type: new or existing, where new users are ones that joined after a date
(e.g., experiment start, or perhaps a month prior).

 User account characteristics: single or shared account at Netflix, or single vs.
family traveler on Airbnb.

Segmented views are commonly used two ways:

1. Segmented view of a metric, independent of any experiment.

2. Segmented view of the Treatment effect for a metric, in the context of an
experiment, referred to in Statistics as heterogeneous Treatment effects,
indicating that the Treatment effect is not homogenous or uniform across
different segments.

Segmented View of a Metric

When the click-through rates on Bing mobile ads were segmented by different
mobile operating systems, they were very different as shown in the graph in
Figure 3.6.

While the initial inclination was to form stories about the loyalty of the users
and how the populations differ, an investigation uncovered that this was due to
different click tracking methodologies used for different operating systems.
There are several ways of tracking clicks, and they differ in fidelity (Kohavi,
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Figure 3.6 CTRs for different mobile Operating Systems

Messner et al. 2010), which leads to different loss rates. On iOS and Windows
Phone, a redirect was used to track the clicks, that is, the click always goes to a
server, is logged, and is then redirected to the destination. This methodology
has high fidelity, but the user experience is slower. On Android, click tracking
was done using a web beacon to indicate a click and then redirected the
browser to the destination page. This methodology is faster for the user, but
lossy; some web beacons will not make it and the link will not be recorded.
This can explain the click-through rate (CTR) difference between iOS and
Android, but why was the Windows Phone click-through rate so high? The
investigation discovered that along with the redirect, there was a bug where
user swipes were incorrectly recorded as a click. Bugs happen. When you see
anomalous data, think of Twyman’s law and investigate the issue.

Segmented View of the Treatment Effect
(Heterogeneous Treatment Effect)

In one experiment, a user interface change was made, which resulted in a very
strong difference between browser segments. For almost all browser segments,
the Treatment effect was a small positive improvement on key metrics, but for
the Internet Explorer 7 segment, there was a strongly negative Treatment effect
on key metrics. As with any strong effect (positive or negative), you should
invoke Twyman’s law and drill into the cause. An investigation revealed that
the JavaScript used was incompatible with Internet Explorer 7, causing an
error that prevented users from clicking links in certain scenarios.
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Such insight is only possible when drilldowns into segments are
enabled, that is, looking at the Treatment effect for different segments,
also referred to in Statistics as Conditional Average Treatment Effects
(CATEs). A good overview on Heterogenous Treatment Effects is avail-
able at EGAP (2018). Identifying interesting segments, or searching for
interactions, can be done using machine learning and statistical techniques,
such as Decision Trees (Athey and Imbens 2016) and Random Forests
(Wager and Athey 2018).

If you can alert the experimenter to interesting segments, you will find many
interesting insights (but remember to correct for multiple hypothesis testing, as
noted above). Getting organizations to run A/B tests is an important step;
providing them with more information than just the overall Treatment effect
gives new insights that help accelerate innovation.

Analysis by Segments Impacted by Treatment Can Mislead

It is possible to evaluate the Treatment effect of two mutually exhaustive and
exclusive segments, and see that the OEC increases for both, yet declines
overall. Unlike Simpson’s paradox (described in the next section), this is due
to migration of users from one segment to another.

For example, assume you have a metric, sessions-per-user, that you care
about. You are working on a new product feature F, which few users use, so
you focus on users of F and the complement (those not using F). You see that
in your experiment, sessions-per-user goes up for users of F. Now you look at
the complement and see that their sessions-per-user go up. Can you cele-
brate? NO! It is possible that sessions-per-user overall decreased or
stayed flat.

As an example, users of F average 20 sessions-per-user, while those not
using F average 10 sessions-per-user. If the Treatment causes users with 15
sessions-per-user to stop using F, the average sessions-per-user will rise for the
segment using F (we removed users with lower than average sessions-per-
user), and it will rise for the complement (we added users with higher average
sessions-per-user), but the aggregate could move in any direction: up, down, or
flat (Dmitriev et al. 2016, section 5.8).

When users move from one segment to another, interpreting metric move-
ments at the segment level may be misleading, so the Treatment effect of the
non-segmented metric (aggregate) should be used. Ideally, segmenting should
be done only by values that are determined prior to the experiment, so that the
Treatment could not cause users to change segments, though in practice
restricting segments this way may be hard for some use cases.
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Simpson’s Paradox

The following is based on Crook et al. (2009). If an experiment goes
through ramp-up (see Chapter 15) that is, two or more periods with differ-
ent percentages assigned to the variants, combining the results can result in
directionally incorrect estimates of the Treatment effects, that is, Treatment
may be better than Control in the first phase and in the second phase, but
worse overall when the two periods are combined. This phenomenon is
called Simpson’s paradox because it is unintuitive (Simpson 1951, Malinas
and Bigelow 2004, Wikipedia contributors, Simpson’s paradox 2019, Pearl
2009).

Table 3.1 shows a simple example, where a website has 1 million
visitors per day on two days: Friday and Saturday. On Friday, the experi-
ment runs with 1% of traffic assigned to the Treatment. On Saturday that
percentage is raised to 50%. Even though the Treatment has a conversion
rate that is better on Friday (2.30% vs. 2.02%) and a conversion rate that is
better on Saturday (1.2% vs. 1.00%), if the data is simply combined over
the two days, it appears that the Treatment is performing worse (1.20%
vs. 1.68%).

There is nothing wrong with the above math. It is mathematically possible
that 4 <% and that § <$§ while 55 >4+C The reason this seems unintuitive is
that we are dealing with weighted averages, and the impact of Saturday, which
was a day with an overall worse conversion rate, impacted the average
Treatment effect more because it had more Treatment users.

Here are other examples from controlled experiments where Simpson’s
paradox may arise:

» Users are sampled. Because there is concern about getting a representative
sample from all browser types, the sampling is not uniform, and users in
some browsers (such as, Opera or Firefox) are sampled at higher rates. It is

Table 3.1 Conversion Rate for two days. Each day has IM customers, and the
Treatment (T) is better than Control (C) on each day, yet worse overall

Friday Saturday Total

C/T split: 99% / 1% C/T split: 50% / 50%

C 20,000 5,000 25,000
=2.02% =1 —o—=1

990, 000 % 500, 000 00% 1,490, 000 08%
T 230 6,000 6,230

— =230 = 1.20% = 1.20%

10,000 % 500,000 % 510,000 %
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possible that the overall results will show that the Treatment is better, but
once the users are segmented into the browser types, the Treatment is worse
for all browser types.

¢ An experiment runs on a website that is implemented in multiple countries,
say the United States and Canada. The proportions assigned to the Control
and Treatment vary by country (e.g., the United States runs at 1% for the
Treatment, while the Canadians do power calculations and determine they
need 50% for the Treatment). If the results are combined, the Treatment may
seem superior, even though the results were segmented by country, the
Treatment will be inferior. This example directly mirrors our previous
ramp-up example.

¢ An experiment is run at 50/50% for Control/Treatment, but an advocate
for the most valuable customers (say top 1% in spending) is concerned
and convinces the business that this customer segment be kept stable and
only 1% participate in the experiment. Similar to the example above, it
is possible that the experiment will be positive overall, yet it will be
worse for both the most valuable customers and for “less-valuable”
customers.

* An upgrade of the website is done for customers in data center DC1 and
customer satisfaction improves. A second upgrade is done for customers in
data center DC2, and customer satisfaction there also improves. It is possible
that the auditors looking at the combined data from the upgrade will see that
overall customer satisfaction decreased.

While occurrences of Simpson’s paradox are unintuitive, they are not
uncommon. We have seen them happen multiple times in real experiments
(Xu, Chen and Fernandez et al. 2015, Kohavi and Longbotham 2010). One
must be careful when aggregating data collected at different percentages.

Simpson’s reversal seems to imply that it is mathematically possible for a
drug to increase the probability of recovery in the aggregate population yet
decrease the probability (so it is harmful) in every subpopulation, say males
and females. This would seem to imply that one should take the drug if
gender is unknown yet avoid it if gender is either male or female, which is
clearly absurd. Pearl (2009) shows that observational data alone cannot help
us resolve this paradox, as the causal model will determine which data to
use (the aggregate or the subpopulation). The “Sure-Thing Principal” The-
orem (6.1.1) states that if an action increases the probability of an event
E in each subpopulation, it must also increase the probability of E in the
population as a whole.
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Encourage Healthy Skepticism

It had been six months since we started concerted A/B testing efforts at
SumAll, and we had come to an uncomfortable conclusion: most of our
winning results were not translating into improved user acquisition. If
anything, we were going sideways. . .

— Peter Borden (2014)

Trustworthy experimentation is sometimes tough for organizations to invest in,
as it involves investing in the unknown—building tests that would invalidate
results if the tests fired. Good data scientists are skeptics: they look at anomal-
ies, they question results, and they invoke Twyman’s law when the results look
too good.
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4

Experimentation Platform and Culture

If you have to kiss a lot of frogs to find a prince, find more frogs and kiss
them faster and faster
— Mike Moran, Do It Wrong Quickly (2007)

As discussed in Chapter 1, running trustworthy controlled experiments is the
scientific gold standard in evaluating many (but not all) ideas and making
data-informed decisions. What may be less clear is that making controlled
experiments easy to run also accelerates innovation by decreasing the cost of
trying new ideas, as the quotation from Moran shows above, and learning
from them in a virtuous feedback loop. In this chapter, we focus on what it
takes to build a robust and trustworthy experiment platform. We start by
introducing experimentation maturity models that show the various phases an
organization generally goes through when starting to do experiments, and
then we dive into the technical details of building an experimentation
platform.

Important organizational considerations include leadership, process, and
training, whether the work should be done in-house or outsourced, and how
the results are ultimately used. The technical tools will support experiment
design, deployment, scaling, and analysis to accelerate insight.

Experimentation Maturity Models

Experimentation maturity models (Fabijan, Dmitriev and Olsson et al. 2017,
Fabijan, Dmitriev and McFarland et al. 2018, Optimizely 2018c, Wider Funnel
2018, Brooks Bell 2015) consist of the phases that organizations are likely to
go through on the way to being data-driven and running every change through
A/B experiments.

58
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We use these four phases of maturity, following Fabijan et al. (2017):

1. Crawl: The goal is building the foundational prerequisites, specifically
instrumentation and basic data science capabilities, to compute the sum-
mary statistics needed for hypothesis testing so that you can design, run,
and analyze a few experiments. Having a few successful experiments,
where success means that the results meaningfully guide forward progress,
is critical to generating momentum to progress to the next stage.

2. Walk: The goal shifts from prerequisites and running a few experiments to a
focus on defining standard metrics and getting the organization to run more
experiments. In this phase, you improve trust by validating instrumentation,
running A/A tests, and sample ratio mismatch (SRM) tests (see Chapter 21).

3. Run: The goal shifts to running experiments at scale. Metrics are compre-
hensive and the goal is to achieve an agreed upon set of metrics or going all
the way to codifying an OEC that captures tradeoffs between multiple
metrics. The organization uses experimentation to evaluate most new
features and changes.

4. Fly: Now you are running A/B experiments as the norm for every change.
Feature teams should be adept at analyzing most experiments—especially
the straightforward ones—without the help of data scientists. The focus
shifts to automation to support this scale, as well as establishing insti-
tutional memory, which is a record of all experiments and changes made,
enabling learning from past experiments (see Chapter 17) to sharing sur-
prising results and best practices, with a goal of improving the culture of
experimentation.

As a rough rule of thumb, in the Crawl phase, an organization is running
experiments approximately once a month (~10/year), and it increases by 4—5x
for each phase: organizations in the Walk phase will run experiments approxi-
mately once a week (~50/year), Run is daily (~250/year), and Fly is when you
reach thousand(s)/year.

As an organization progresses through these phases, the technical focus, the
OEC, and even the team set-ups will shift. Before we dig into the technical
aspects of building an experiment platform in the Walk, Run, and Fly phases,
let’s highlight several areas for organizations to focus on regardless of phase,
including leadership and processes.

Leadership

Leadership buy-in is critical for establishing a strong culture around experi-
mentation and embedding A/B testing as an integral part of the product
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development process. Our experience is that organizations and cultures go
through stages in learning to experiment as well (Kohavi 2010). The first stage,
which precedes any experimentation, is hubris, where measurement and
experimentation are not necessary because of confidence in the HiPPO
(Highest Paid Person’s Opinion). Next is measurement and control, where an
organization starts measuring key metrics and controlling for unexplained
differences. As Thomas Kuhn notes, paradigm shifts happen “only through
something’s first going wrong with normal research” (Kuhn 1996). However,
there is still a strong dependence on the HiPPO and entrenched norms, beliefs,
and paradigms, as an organization may reject new knowledge that is contra-
dictory per the Semmelweis Reflex (Wikipedia contributors, Semmelweis
reflex 2019). It is only through persistent measurement, experimentation, and
knowledge gathering that an organization can reach a fundamental understand-
ing, where causes are understood, and models actually work.

To reach this last stage, in our experience, buy-in from executives and
managers must happen at multiple different levels and include:

e Engaging in the process of establishing shared goals and agreeing on the
high-level goal metrics and guardrail metrics (see Chapter 18) and ideally
codifying tradeoffs as steps to establishing an OEC (see Chapter 7)

e Setting goals in terms of improvements to metrics instead of goals to ship
features X and Y. There is a fundamental shift that happens when teams
change from shipping a feature when it does not hurt key metrics, to NOT
SHIPPING a feature unless it improves key metrics. Using experiments as a
guardrail is a difficult cultural change, especially for large, established
teams to make as they shift towards a data-informed culture.

o Empowering teams to innovate and improve key metrics within the organiza-
tional guardrails (see Chapter 21). Expecting ideas to be evaluated and for
many of them to fail and showing humility when their ideas fail to move the
metrics they were designed to improve. Establishing a culture of failing fast.

e Expecting proper instrumentation and high data quality.

e Reviewing experiment results, knowing how to interpret them, enforcing
standards on interpretation (e.g., to minimize p-hacking (Wikipedia con-
tributors, Data dredging 2019)), and giving transparency to how those
results affect decision making.

e As discussed in Chapter 1, many of the decisions that experiments can best
help inform are optimization; a long sequence of experiments can also
inform overall strategy as well. For example, Bing’s integration with social
networks, such as Facebook and Twitter, was abandoned after experiments
showed no value for two years. As another example, evaluating an idea like
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whether including videos in promotional e-mails results in higher conver-
sion rates would require testing multiple implementations.

e Ensuring a portfolio of high-risk/high-rewards projects relative to more
incremental gain projects, understanding that some will work, and many
—even most—will fail. Learning from the failures is important for con-
tinued innovation.

e Supporting long-term learning from experiments, like running experiments
just to collect data or establish return-on-investment (ROI). Experimenta-
tion is not just useful for making ship/no-ship decisions on individual
changes, but also holds an important role in measuring impact and assessing
ROI for various initiatives. For example, see Chapter 5 and long-term
experiments (Hohnhold, O’Brien and Tang 2015).

o Improving agility with short release cycles to create a healthy, quick
feedback loop for experimentation, requiring establishing sensitive surro-
gate metrics (see Chapter 7).

Leaders cannot just provide the organization with an experimentation platform
and tools. They must provide the right incentives, processes, and empower-
ment for the organization to make data-driven decisions. Leadership engaging
in these activities is especially crucial in the Crawl and Walk maturity phases
to align the organization on goals.

Process

As an organization moves through the phases of experimentation maturity,
establishing educational processes and cultural norms is necessary to ensure
trustworthy results. Education ensures that everyone has the basic understand-
ing to do a good job at designing and executing trustworthy experiments and
interpreting the results correctly. The cultural norms help set an expectation of
innovation, celebrating surprising failures and always wanting to learn. Note
that this is an ongoing challenge, as at a summit in 2019 with 13 online
companies on experiments, establishing cultures and process that encourage
experimentation and innovation continues to be a challenge (Gupta, Kohavi
et al. 2019).

For education, establishing just-in-time processes during experiment design
and experiment analysis can really up-level an organization. Let’s consider this
example from Google: When experimenters working on search wanted to run
an experiment, they had to complete a checklist that was reviewed by experts.
The checklist included basic questions like, “What is your hypothesis?” and
“How big of a change do you care about?” and went all the way through to
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power analysis questions. Because trying to teach everyone to do a proper
power analysis was unrealistic, the checklist also helped ensure that experi-
ments were sufficiently powered by linking to a power calculator tool. Once
the organization was sufficiently up-leveled, the search organization no longer
needed such an explicit checklist process.

Generally, experimenters only require hand-holding the first few times they
run an experiment. They get faster and more independent with every subse-
quent experiment. The more experienced the experimenter, the better they
explain concepts to teammates and, over time, serve as expert reviewers. That
said, even experienced experimenters typically still need help for experiments
requiring unique designs or new metrics.

Both LinkedIn and Microsoft (Google too, although not regularly) hold
classes to keep employees aware of experimental concepts (Kohavi, Crook
and Longbotham 2009). The classes have grown in popularity as the culture
grows more accepting of experiments over time.

Analogous to the checklist at experiment design time, regular experiment
review meetings for analysis results provide similar just-in-time education
benefits. In these meetings, experts examine the results, first for trustworthi-
ness — oftentimes finding instrumentation issues, especially for first-time
experimenters — before diving into useful discussions resulting in launch/no-
launch recommendations that experimenters could take to their leaders. These
discussions broadened the understanding of goal, guardrail, quality, and debug
metrics (see Chapter 6) and developers were more likely to anticipate those
issues during the development lifecycle. These discussions also established
metric tradeoffs that can be codified and captured in an OEC (see Chapter 7).
These experiment reviews are also where failed experiments are discussed and
learned from: many high-risk/high-reward ideas do not succeed on the first
iteration, and learning from failures is critical for the refinement needed to
nurture these ideas to success, as well as to decide when to move on (see
Chapter 1).

Over time, the experts see patterns in changes, such as seeing how the
impact of an experiment relates to similar prior experiments, and how this
can be further examined in a meta-analysis (see Chapter 8) that can lead to user
experience improvements and updates to key metric definitions. The other
unintended, but positive, outcome we noticed about this experiment analysis
review forum is that it brought together different teams in a single meeting so
that they could learn from each other. Note that we have observed that the
teams do need to be working on the same product and share the same metrics
and OEC so that there is enough shared context for learning. If the teams are
too diverse or if there is insufficient maturity in the tooling, then this meeting
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can be unproductive. We suspect that this type of review starts being effective
in the late Walk or in the Run phases of maturity.

Through the platform or processes, we can share learnings from experiments
broadly, be it the meta-learning from experts observing many experiments or
the learning gained from a single experiment. This can happen via regular
newsletters, Twitter-feed, a curated homepage, a “social network™ attached to
the experiment platform to encourage discussion (as is done at Booking.com)
or other channels. Institutional memory (see Chapter 8) becomes increasingly
useful in the Fly phase.

For experimentation to succeed and scale, there must also be a culture
around intellectual integrity—the learning matters most, not the results or
whether we ship the change. From that perspective, full transparency on the
experiment impact is critical. Here are some ways we found to achieve this:

o Compute many metrics, ensure that the important metrics, such as the OEC,
guardrail, and other related metrics, are highly visible on the experiment
dashboard, so that teams cannot cherry-pick when sharing results.

e Send out newsletters or e-mails about surprising results (failures and suc-
cesses), meta-analyses over many prior experiments to build intuition, how
teams incorporate experiments, and more (see Chapter 8). The goal is to
emphasize the learning and the needed cultural support.

e Make it hard for experimenters to launch a Treatment if it impacts important
metrics negatively. This can go from a warning to the experimenter, a
notification to people who care about those metrics, all the way to even
potentially blocking a launch (this last extreme can be counterproductive as
it is better to have a culture where metrics are looked at and controversial
decisions can be openly discussed).

o Embrace learning from failed ideas. Most ideas will fail, so the key is to
learn from that failure to improve on subsequent experiments.

Build vs. Buy

Figure 4.1 shows how Google, LinkedIn, and Microsoft scaled experimentation
over the years, with year-1 being a year where experimentation scaled to over an
experiment per day (over 365/year). The graph shows an order of magnitude
growth over the next four years for Bing, Google, and LinkedIn. In the early
years, growth was slowed by the experimentation platform capabilities itself. In
the case of Microsoft Office, which just started to use controlled experiments as
a safe deployment mechanism for feature rollouts at scale in 2017, the platform
was not a limiting factor because of its prior use in Bing, and experiments grew
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Figure 4.1 Experimentation Growth over the years for Bing, Google, LinkedIn,
and Office. Today, Google, LinkedIn, and Microsoft are at a run rate of over
20,000 controlled experiments/year, although counting methodologies differ (e.g.,
ramping up the exposure from 1% of users to 5% to 10% can be counted as one or
three experiments; an experiment consisting of a Control plus two Treatments can
count as either one or two experiments)

by over 600% in 2018. Growth slows when the organization reaches a culture of
“test everything” and the limiting factor becomes its ability to convert ideas into
code that can be deployed in controlled experiments.

While we all have been heavily involved in building in-house experimen-
tation platforms at our respective companies, we are not necessarily recom-
mending that every company should build their own. Especially in the Walk
phase, building or buying is an ROI decision (statistics on building versus
buying available in Fabijian et al. (2018)). Here are several questions to
consider when making that decision.

Can an External Platform Provide the Functionality You Need?

e Consider the types of experiments you want to run, such as frontend vs.
backend, server vs. client, or mobile vs. web. Many third-party solutions are
not versatile enough to cover all types. For example, solutions based on
JavaScript would not work for backend experiments or scale well for many
concurrent experiments. Some vendors are strong in one channel, but not
others (e.g., great softwar development kit (SDK) for mobile, but weak
ability to handle web; or great WYSIWYG editor for web, but a mobile
SDK that crashes too often).

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:53, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.006


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.006
https://www.cambridge.org/core

Experimentation Maturity Models 65

e Consider website speed. Several external solutions require additional Java-
Script, which is known to slow down page loads (Optimizely 2018, Kings-
ton 2015, Neumann 2017, Kesar 2018, Abrahamse 2016). As shown in
Chapter 5, increased latency impacts user engagement.

e Consider the dimensions and metrics you may want to use. For example, some
external platforms are limited on what metrics you can compute on experi-
ments. Complex metrics that require sessionization are not possible in external
solutions. Even metrics like percentiles, which are commonly used to measure
latency where the tail rather than average tends to be more sensitive, are not
often supported. Since broad business reporting might have to be built separ-
ately, it could also be harder to establish a common language of dimensions
and metrics, so ensuring consistency may be more difficult if you buy.

e Consider what randomization unit you want to use and what data sharing is
acceptable (e.g., to ensure that user privacy is respected). There are usually
restrictions on what information (especially about users, see Chapter 9) can
be passed on to external parties, which may be limiting or induce
additional costs.

o [s data logged to the external party easily accessible? Do clients need to log
to two places (dual-logging)? What happens when summary statistics
diverge? Are there tools to reconcile? These are often under-estimated
complexities that have reduced trust and raised valid questions about the
reliability of different systems.

e Can you integrate additional sources of data? Do you want to integrate
purchase data, returns, demographics? Some external systems do not allow
you to join such external data.

® Do you need near real-time (NRT) results? These are often useful for
quickly detecting and stopping bad experiments.

e Are you running enough experiments that you want to establish your own
institutional memory? Many third-party experiment systems do not have
institutional memory features.

e Can you implement your feature in its final version? Many WYSIWYG
systems require you to re-implement your feature for real post-experiment.
At scale, this can be limiting, with a queue of features that need re-
implementation.

What Would the Cost Be to Build Your Own?
Building a scalable system is both hard and expensive, as you will see in our
discussion on the technical platform issues later in this chapter.
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What’s the Trajectory of Your Experimentation Needs?

This type of infrastructure investment is about anticipation, that is, how many
experiments your organization will run if it truly embraces experimentation,
not how many are currently running. If the momentum and demand is there,
and the volume may grow beyond what an external solution can accommodate,
build. It takes longer to build an internal solution, but integrating an external
solution takes effort too, especially if you need to switch to a different solution
as the company scales.

Do You Need to Integrate into Your System’s Configuration and
Deployment Methods?
Experimentation can be an integral part of a continuous deployment process.
There is a lot of synergy between experimentation and how the engineering
system handles configuration and deployment (see Chapter 15). If the integra-
tion is necessary, such as for more complicated debugging situations, it may be
harder with a third-party solution.

Your organization may not be ready for the investment and commitment
of building your own platform, so it may make sense to leverage an
external solution to demonstrate the impact from more experimentation before
determining if and when to make a case for building your own experiment
platform.

Infrastructure and Tools

In Chapter 3, we showed that there are many ways an experiment can go
wrong. Creating an experiment platform is not just about accelerating
innovation with experimentation, it is also critical to ensuring the trust-
worthiness of the results for decision making. Scaling experimentation at a
company not only involves building the infrastructure for the experiment
platform but also the tools and processes to embed experimentation
deeply into the company’s culture, development, and decision-making
processes. The goal of an experiment platform is to make experimentation
self-service and minimize the incremental costs of running a trustworthy
experiment.

An experimentation platform must encompass every step of the process,
from designing and deploying experiments to analyzing them (Gupta et al.
2018). If you look at the components of an experiment platform from Bing
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(Kohavi, Longbotham et al. 2009), LinkedIn (Xu et al. 2015), or Google (Tang
et al. 2010), there are four high-level components:

e Experiment definition, setup, and management via a user interface (UI) or
application programming interface (API) and stored in the experiment
system configuration

e Experiment deployment, both server- and client-side, that covers variant
assignment and parameterization

e Experiment instrumentation

e Experiment analysis, which includes definition and computation of metrics
and statistical tests like p-values.

You can see how these components fit together in Figure 4.2. In this section,
we dive into each of these components.

Experiment Definition, Set-up, and Management

To run many experiments, experimenters need a way to easily define, setup,
and manage the experiment lifecycle. To define, or specify, an experiment, we
need an owner, a name, a description, start and end dates, and several other
fields (see Chapter 12). The platform also needs to allow experiments to have
multiple iterations for the following reasons:

e To evolve the feature based on experiment results, which may also involve
fixing bugs discovered during the experiment.

e To progressively roll out the experiment to a broader audience. This could
either be via pre-defined rings (e.g., developers on the team, all employees
within the company) or larger percentages of the outside population (Xia et al.
2019).

All iterations should be managed under the same experiment. In general, one
iteration per experiment should be active at any time, although different
platforms may need different iterations.

The platform needs some interface and/or tools to easily manage many
experiments and their multiple iterations. Functionalities should include:

e Writing, editing, and saving draft experiment specifications.

e Comparing the draft iteration of an experiment with the current (running)
iteration.

e Viewing the history or timeline of an experiment (even if it is no longer
running).
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Figure 4.2 Possible experiment platform architecture. The client and/or the server
can call the Variant Assignment Service. The Variant Assignment Service may be
a separate server, or a library embedded in the client and/or server (in which case
the configurations would be pushed directly to the client and/or server). See the
discussion later on in this chapter for a discussion of the different architecture
options

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:53, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.006


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.006
https://www.cambridge.org/core

Infrastructure and Tools 69

e Automatically assigning generated experiment IDs, variants, and iterations
and adding them to the experiment specification. These IDs are needed in
the experiment instrumentation (discussed later in this chapter).

e Validating that there are no obvious errors in the specifications, such as
configuration conflicts, invalid targeting audience, and so on.

e Checking the status of an experiment as well as starting/stopping an experi-
ment. To guard against human error, usually only experiment owners or
individuals with special permission can start an experiment. However, due
to the asymmetry of harming users, anyone can stop an experiment, although
alerts are generated to ensure that experiment owners are informed.

Also, since the experiment is impacting real users, additional tools or work-
flows are needed to check the experiment variants before they go live. Options
range from test code that must be run before deployment or a permission
control system where experiments must get approval from trusted experts.

Beyond these basic checks, especially in the Fly phase when experiments
are being run at scale, the platform also needs to support:

e Automation of how experiments are released and ramped up (see Chapter 15
for more detail)

e Near-real-time monitoring and alerting, to catch bad experiments early

e Automated detection and shutdown of bad experiments.

These increase the safety of the experiments.

Experiment Deployment

After creating an experiment specification, the specification needs to be
deployed to affect a user’s experience. Deployment usually involves two
components:

1. An experimentation infrastructure that provides experiment definitions,
variant assignments, and other information

2. Production code changes that implement variant behavior according to the
experiment assignment.

The experimentation infrastructure must provide:

e Variant assignment: Given a user request and its attributes (e.g., country,
language, OS, platform), which experiment and variant combinations is that
request assigned to? This assignment is based on the experiment specifica-
tion and a pseudo-random hash of an ID, that is, f(ID). In most cases, to
ensure the assignment is consistent for a user, a user ID is used. Variant
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assignment must also be independent, in that knowing the variant assign-
ment of one user should not tell us anything about variant assignment for a
different user. We discuss this in more depth in Chapter 14. In this chapter,
we assume user is the randomization unit.

e Production code, system parameters and values: Now that you have
variant assignment and definitions, how do you ensure that the user receives
the appropriate experience: how do you manage different production code
and which system parameters should change to what values?

This interface (or interfaces) is represented as the Variant Assignment Service
in Figure 4.2, and can return either just the variant assignment or a full
configuration with the parameter values for performance reasons. In either
case, the variant assignment service does not need to be a distinct server.
Instead, it can be incorporated directly into the client or server via a shared
library. Regardless of interface, a single implementation is critical to prevent
inadvertent divergence and bugs.

There are important subtleties to consider when implementing the infra-
structure, especially when operating at scale. For example, is atomicity
required, and if so, at what granularity? Atomicity means whether all servers
simultaneously switch over to the next iteration of an experiment. One
example of where atomicity is important is in a web service, where a single
request can call hundreds of servers, and inconsistent assignment leads to an
inconsistent user experience (e.g., imagine a search query that requires mul-
tiple servers, each handling a disjoint part of the search index; if the ranking
algorithm has changed, the same algorithm must be used by all servers). To fix
this example, the parent service can perform variant assignment and pass it
down to the child services. There are also differences in experiment deploy-
ment between client-based and server-based experiments, discussed further in
Chapter 12.

Another consideration is where in the flow variant assignment happens (i.e.,
when the variant assignment interface is called). As discussed in Kohavi,
Longbottom et al. (2009), variant assignment can happen in several places:
outside of production code entirely using traffic splitting (e.g., traffic front
door), client side (e.g., mobile app), or server side. To be better informed while
making this decision, consider these key questions:

e At what point in the flow do you have all the required information to do
variant assignment? For example, if you only have a user request, you
may have information, such as user ID, language, and device. To use
additional information, such as the age of the account, the time of their last
visit, or frequency of visits, you may need to do a look-up before you can
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use that criteria for variant assignment. This could push variant assignment
to later in the flow.

e Do you allow experiment assignment to happen only at one point in
the flow or at multiple points? If you are in the early stages of building your
experiment platform (Walk or early Run phases), we recommend having only
one point where experiment assignment happens to keep it simple. If you
have multiple assignment points, you will need orthogonality guarantees
(e.g., overlapping experiments, as discussed in Concurrent Experiments later
in this chapter) to ensure that experiment assignment that happens earlier
does not bias experiment assignment that happens later in the flow.

Now that you have assigned variants, it is time to ensure that the system
provides the appropriate Treatment to the user. There are three main choices
for architecture.

e The first architecture creates a code fork based on variant assignment:
variant = getVariant (userId)
If (variant == Treatment) then
buttonColor = red
Else
buttonColor =blue
e The second architecture moves to a parameterized system, where any
possible change that you want to test in an experiment must be controlled
by an experiment parameter. You can either choose to continue to use
code forks:
variant = getVariant (userId)
If (variant == Treatment) then
buttonColor = variant.getParam (“buttonColor”)
Else
buttonColor =blue
Or move to:
variant = getVariant (userId)

buttonColor = variant.getParam (“buttonColor”)

e The third architecture removes even the getVariant () call. Instead,
early in the flow, variant assignment is done, and a configuration with the
variant and all parameter values for that variant and for that user are passed
down through the remaining flow.

buttonColor = config.getParam (“buttonColor”)
Each system parameter has a default setting (e.g., the default button-
Color is blue), and for Treatment, you only need to specify which system
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parameters change and their values. The config that is passed contains all
parameters and the appropriate values.

There are advantages and disadvantages to each architecture. The main advan-
tage of the first architecture is that variant assignment happens close to the
actual code change, so handling triggering is easier. The Control and Treat-
ment populations in the first architecture both contain only the affected users
(see Chapter 20); however, the disadvantage can be escalating technical debt,
as managing forked code paths can become quite challenging. The second
architecture, especially with the second option, reduces the code debt while
maintaining the advantage of handling triggering more easily. The third
architecture moves variant assignment early, so handling triggering is more
challenging. However, it can also be more performant: as a system grows to
have hundreds to thousands of parameters, even if an experiment likely affects
only a few parameters, then optimizing parameter handling, perhaps with
caches, becomes critical from a performance perspective.

Google shifted from the first architecture to the third based on a combination
of performance reasons as well as the technical debt and the challenges of
reconciling code paths when it came time to merge back into a single path to
make future changes easier. Bing also uses the third architecture. Microsoft
Office uses the first option in the second architecture but implemented a system
where a bug ID is passed as an experiment parameter, triggering an alert after
three months to remind engineers to remove experimental code paths.

Regardless of which architecture you choose, you must measure the cost and
impact of running experiments. An experiment platform can also have per-
formance implications, so running some traffic outside of the experimentation
platform is itself an experiment to measure the impact of the platform, be that
in site speed latency, CPU utilization and machine cost, or any other factor.

Experiment Instrumentation

We assume you already log basic instrumentation, such as user actions and
system performance (see Chapter 13 for what to instrument). Especially when
testing new features, you must update your basic instrumentation to reflect
these new features, as these updates to your instrumentation allow you to
perform proper analysis. The focus during the Crawl phase is on this level of
instrumentation, and leadership must ensure that instrumentation is constantly
being reviewed and improved.

For experiments, you should also instrument every user request and inter-
action with which variant and iteration is run. The iteration is important
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especially when an experiment starts or ramps up, because not all servers or
clients will simultaneously change the user Treatment (Chapter 12).

In many cases, especially as you get to the Run and Fly phases, we want to
log the counterfactual, or what would have happened. For example, for a
Treatment user, we may want to log what search results would have returned
if they were the Control variant. In the system parameterized architecture
described above, where variant assignment happens early, you may find
counterfactual logging quite challenging but necessary (see Chapter 20).
Counterfactual logging can be expensive from a performance perspective, in
which case you may need to establish guidelines about when it is needed. If
your product has a place for users to enter feedback, that feedback and the
variant IDs must be logged. This is helpful when feedback is specific to the
variant.

Scaling Experimentation: Digging into Variant Assignment

As companies move from the Walk to Run phase, to provide enough statistical
power to experiments, a sufficient percentage of users must be assigned to each
variant. Where maximal power is desired, an experiment will run at 50%/50%
and include all users. To scale the number of experiments, users must be in
multiple experiments. How does that work?

Single-Layer Method
Variant assignment is the process by which users are consistently assigned to
an experiment variant. In the Walk phase, the number of experiments is usually
small and it is common to divide all traffic with each experiment variant
receiving a specified fraction of the total traffic. You might have one experi-
ment with one Control and two Treatment variants taking up 60% of traffic,
and another experiment with just one Control and one Treatment taking up the
other 40% of traffic (Figure 4.3). This assignment is typically done using a

Incoming request has user UID
f(UID) % 1000 = m,

Control Treatment 1| Treatment 2 Control Treatment

yellow blue green suggest on | suggest off

My=Mano M0~ Ma00 M40~ Mgo0 Meo1~Maoo Meo1™M1000
m

Figure 4.3 Example Control-Treatment assignment in the Single-Layer Method
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hash function to consistently assign the users to buckets. In this example, we
use 1,000 disjoint buckets and specify which variant gets which buckets. In
this example, a variant with 200 buckets has a 20% traffic allocation.

The assignment of users to buckets must be random but deterministic. If you
compare any two buckets running the same Treatment, they are assumed to be
statistically similar (see Chapter 19):

e There should be roughly the same number of users in each bucket (see
Chapter 3). If you broke it down by key dimensions, such as country,
platform, or language, comparing slices across buckets will also be roughly
the same.

® Your key metrics (goal, guardrail, quality), should have roughly the same
values (within normal variability).

Monitoring assignments are key! Google, Microsoft, and many other com-
panies found errors in the randomization code by monitoring bucket character-
istics. Another common issue are carry-over effects (see Chapter 23), where
prior experiments can taint buckets for the current experiment. Re-
randomization, or shuffling, the buckets with every experiment so that they
are no longer contiguous is a common solution (Kohavi, et al. 2012).

The Single-Layer (also called a numberline) method is simple and allows
multiple experiments to run simultaneously (each user is only in a single
experiment). It is a plausible choice in early maturity phases when few experi-
ments run concurrently; however, the main drawback is the limitation on the
number of concurrent experiments, as you must ensure that each experiment
has enough traffic for adequate power. Operationally, managing experimental
traffic in a Single-Layer system can be challenging, as even in this early phase,
experiments are running concurrently—just not on a single user. To manage
the concurrency, LinkedIn, Bing, and Google all started with manual methods
(at LinkedIn, teams would negotiate traffic “ranges” using e-mails; at Bing, it
was managed by a program manager, whose office was usually packed with
people begging for experimental traffic; while at Google, it started with e-mail
and instant messaging negotiation, before moving to a program manager).
However, the manual methods do not scale, so all three companies shifted to
programmatic assignment over time.

Concurrent Experiments
To scale experimentation beyond what is possible in a Single-Layer method,
you need to move to some sort of concurrent (also called overlapping) experi-
ment system, where each user can be in multiple experiments at the same time.
One way to achieve this is to have multiple experiment layers where each layer
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Incoming request has user UID
f(UID, layer,) % 1000 = m,
f(UID, layer,) % 1000 = n,

Ads Control |Treatment 1|Treatment 2| Treatment 3| Treatment 4
layer yellow, black | yellow, blue | blue, black | blue, green | green, black
(|ayer 1 M;y=Maygo M0~ Mago M401=My00 Mgo1~Mg00 Mgo1=M1000
m
Search Control Treatment
layer suggest on suggest off
(layer 2) N=Nsg0 Ns01=M1000

n

Figure 4.4 Control-Treatment assignment example in an overlapping methodology

behaves like the Single-Layer method. To ensure orthogonality of experiments
across layers, in the assignment of users to buckets, add the layer ID. This is
also where you would add, as in the experiment specification discussed above,
the layer ID (or some other way of specifying constraints).

When a request comes in, variant assignment is done once for each layer
(see Figure 4.4 for an example with two layers). This implies that both
production code and instrumentation must handle a vector of variant IDs.
The main question with a concurrent experiment system is how to determine
the layers, and there are several options.

One possibility is to extend a full factorial experiment design into a full
factorial platform design. In a full factorial experiment design, every possible
combination of factors is tested as a variant. If we extend that to a platform,
then a user is in all experiments simultaneously: the user is assigned to a
variant (Control or any of the Treatments) for every experiment running. Each
experiment is associated with a unique layer ID, so all experiments are
orthogonal to each other. Iterations of the same experiment usually share the
same hash ID to ensure a consistent experience for a user. This simple parallel
experimentation structure allows you to scale the number of experiments easily
in a decentralized manner.

The main drawback of this platform design is that it does not avoid potential
collisions, where certain Treatments from two different experiments give users
a poor experience if they coexist. For example, we could be testing blue text in
Experiment One and blue background in Experiment Two. It would have been
a horrible experience for any users who happen to fall into both Treatments.
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In statistical terms, these two experiments “interact” with each other. It is not
only a poor user experience, the results measured for each experiment inde-
pendently may also be incorrect without considering any interactions between
the two experiments. Note that not all interactions are antagonistic—some-
times being in both Treatments helps more than the sum.

That said, a factorial platform design might be preferred if the reduction on
statistical power when splitting up traffic outweighs the potential concern of
interaction. Moreover, if we set up these experiments independently, we can
analyze to see which experiments interact what their effects would be without
interaction. Of course, if there is no significant interaction, each experiment
can be analyzed separately, and each gets to enjoy the full amount of traffic
available for maximum power. Microsoft’s experimentation platform has a
robust system that automates the detection of interactions (Kohavi et al. 2013).

To prevent poor user experiences, we can either use a nested platform
design (Tang et al. 2010) or a constraints-based platform design (Kohavi
et al. 2013). For scalability, Google, LinkedIn, Microsoft, and Facebook use
some variation of these designs (Xu 2015, Bakshy, Eckles and Bernstein
2014).

In a nested design, system parameters are partitioned into layers so that
experiments that in combination may produce a poor user experience must be
in the same layer and be prevented by design from running for the same user.
For example, there might be one layer for the common UI elements (e.g., the
header of the page and all information in the header), another layer for the
body, a third layer for back-end systems, a fourth layer for ranking parameters,
and so on.

A constraints-based design has experimenters specify the constraints and the
system uses a graph-coloring algorithm to ensure that no two experiments that
share a concern are exposed to the user. Automated systems for detecting
interactions (Kohavi et al. 2013) can be a useful extension.

Experimentation Analytics

To move to the later phases of experimentation maturity, we also need
automated analysis, which is crucial both for saving teams from needing to
do time-consuming ad hoc analysis, and ensuring that the methodology behind
the reports is solid, consistent, and scientifically founded. We assume that the
work of choosing the goal, guardrail, and quality metrics is already done, as
well as any codification of tradeoffs into an OEC.

Automating analysis first requires data processing, where the goal is to get
data into a usable state to compute and visualize the experiment results. Since
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instrumentation about a user request may happen in multiple systems, data
processing typically involves sorting and joining the different logs and
cleansing, sessionizing and enriching them. This process is sometimes referred
to as cooking the data.

When you have the processed data, the goal is to summarize and highlight
the key metrics to help guide decision makers to a launch/no-launch decision.
This requires data computation of metrics (e.g. OEC, guardrail metrics, quality
metrics) by segments (e.g., country, language, device/platform), computations
of p-values/confidence intervals, also trustworthiness checks, such as the SRM
check. It can also include analysis to automatically find which segments are
most interesting (see Chapter 3). Note that while the data computation may
compute all of these in a single step, when you actually look at the experiment
data, you must look at the trustworthiness checks first, before checking the
OEC, doing any segmentation, and so on. However, before you look at the
experiment data, all of the data cooking and computation must also be thor-
oughly tested and checked to ensure the trustworthiness of these processes.

Given the computation, we can finally create the data visualization to
highlight key metrics and interesting metrics and segments in an easy-to-
understand way. This visualization can be as simple as an Excel-like spread-
sheet. Metrics are presented as a relative change, with clear indication if results
are statistically significant, often using color-coding to make significant
changes stand out. To foster a culture of intellectual integrity, ensure that
results use common definitions that are tracked and accessible, as well as
frequently reviewed, agreed upon and updated.

As an organization moves into the Run and Fly phase, there can be many
metrics —even thousands! This is when you group metrics by tier (company-
wide, product-specific, feature-specific (Xu et al. 2015, Dmitriev and Wu
2016)) or by function (OEC, goal, guardrail, quality, debug; see Chapter 7).
Multiple testing becomes more important as the number of metrics grow, and
we found that one common question arose from experimenters: Why did this
metric move significantly when it seems irrelevant?

While education can help, options in the tool to use p-value thresholds
smaller than the standard 0.05 value are effective. Lower thresholds allow
experimenters to quickly filter to the most significant metrics (Xu et al. 2015).

Use visualization tools to generate per-metric views of all experiment
results, which allows stakeholders to closely monitor the global health of
key metrics and see which experiments are most impactful. This transparency
encourages conversations between experiment owners and metric owners,
which in turn increases the overall knowledge of experimentation in your
company.
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Visualization tools are a great gateway for accessing institutional memory to
capture what was experimented, why the decision was made, and successes
and failures that lead to knowledge discovery and learning. For example,
through mining historical experiments, you can run a meta-analysis on which
kind of experiments tend to move certain metrics, and which metrics tend to
move together (beyond their natural correlation). We discuss this more in
Chapter 8. When new employees join the company, visuals help them quickly
form intuition, get a feel for corporate goals, and learn your hypothesis
process. As your ecosystem evolves, having historical results and refined
parameters allows you to rerun experiments that failed.
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PART II

Selected Topics for Everyone

Part II provides details on five topics relevant for everyone involved with
experiments, especially leaders and executives.

We start with Speed Matters: An End-to-End Case Study, which is an end-
to-end example of using careful experiment design and analysis to establish the
importance of latency and site speed as a sensitive surrogate metric for user
engagement and revenue. It is also a good example of the type of result that is
likely applicable across sites and domains.

Next, because metrics are crucial for data-informed decisions in every
company, we introduce Organizational Metrics that leaders should under-
stand, discuss, and establish for their organization regardless of whether they
are running experiments. We discuss the desiderata for those metrics, as well
as how to create, validate, and iterate on them.

Especially as an organization evolves their experimentation practices,
leaders need to discuss — and ideally agree — on Metrics for Experimentation
and the Overall Evaluation Criterion (OEC). An OEC combines one or more
organizational metrics that meet specific criteria needed for experimentation.
The combination is used to encode tradeoffs between these metrics to make
online controlled experiments and driving innovation at scale easier.

As an organization begins to scale experimentation in the Run and Fly
maturity phases (see Chapter 4), establishing Institutional Memory and
Meta-Analysis becomes increasingly useful. Institutional memory captures
past experiments and changes, and drives innovation, to help encourage a
culture of data-informed decision making and facilitate continuous learning.

Finally, online controlled experiments are run on real people, so Ethics in
Controlled Experiments and end-user considerations are very important. We
motivate the importance of ethics for online controlled experimentation, sum-
marize key important considerations, and give pointers to other resources in
the field.
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5

Speed Matters
An End-to-End Case Study

The dangers of a slow web site: frustrated users, negative brand
perception, increased operating expenses, and loss of revenue
— Steve Souders (2009)

An engineer that improves server performance by 10 msec (that’s 1/30 of
the speed that our eyes blink) more than pays for his (or her) fully-loaded
annual costs. Every millisecond counts

— Kohavi, Deng, Frasca, Walker, Xu and Pohlmann (2013)

Fast is my favorite Feature
— Google shirt circa 2009

Why you care: We begin with an end-to-end example of the design (with
explicit assumptions), execution, and interpretation of an experiment to assess
the importance of speed. Many examples of experiments focus on the User
Interface (UI) because it is easy to show examples, but there are many
breakthroughs on the back-end side, and as multiple companies discovered:
speed matters a lot! Of course, faster is better, but how important is it to
improve performance by a tenth of a second? Should you have a person
focused on performance? Maybe a team of five? The return-on-investment
(ROI) of such efforts can be quantified by running a simple slowdown experi-
ment. In 2017, every tenth of a second improvement for Bing was worth $18
million in incremental annual revenue, enough to fund a sizable team. Based
on these results and multiple replications at several companies through the
years, we recommend using latency as a guardrail metric.

How important is product performance? Where in the product is reducing
latency important? Controlled experiments provide clear answers to these
questions through a simple yet powerful technique: slowdown experiments.
By slowing down the product, we can assess the impact of increased latency on
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key metrics, including declines in revenue and user satisfaction metrics. Under
mild assumptions that we can verify, we can show that an improvement to
performance that is, reducing latency, improves these metrics: revenue and
satisfaction increase.

At Amazon, a 100 msec slowdown experiment decreased sales by 1%
(Linden 2006, 10). A rare joint talk by speakers from Bing and Google
(Schurman and Brutlag 2009) showed the significant impact of performance
on key metrics, including distinct queries, revenue, clicks, satisfaction, and
time-to-click. A 2012 detailed study at Bing (Kohavi et al.2013) showed that
every 100 msec speedup improves revenue by 0.6%. In 2015, as Bing’s
performance improved, there were questions about whether there is still value
to performance improvements when the server was returning results in under a
second at the 95th percentile. A follow-on study was conducted and while the
impact on revenue was somewhat reduced, Bing’s revenue improved so much
that each millisecond in improved performance was worth more than in the
past: every four milliseconds improvement funded an engineer for a year!

Multiple performance-related results were shared in Why Performance
Matters (Wagner 2019), showing improvements to conversions and user
engagement, although many of the results are not from controlled experiments,
so their results are confounded with other changes.

One decision you might face is whether to use a third-party product for person-
alization or optimization. Some of these products require that you insert a Java-
Script snippet at the top of the HTML page. These are blocking snippets that slow
the page significantly because they require a roundtrip to the snippet provider and
transfer the JavaScript, which is typically tens of kilobytes (Schrijvers 2017,
Optimizely 2018b). Putting the snippet lower on the page results in page flashing.
Based on latency experiment results, any increase in goal metrics might be offset by
the cost of the latency increase. Thus, we recommend using server-side personal-
ization and optimization whenever possible, that is, have the server side do the
variant assignment (see Chapter 12) and generate the HTML code for that variant.

Our goal is to show how to measure the impact of performance on key
metrics, not the specific techniques for improving performance. There are
several excellent resources available for improving performance (Sullivan
2008, Souders 2007, 2009).

Another benefit of running this type of experiment is that you can generate a
mapping from performance delta to the delta impact on key metrics to answer
such questions as:

o What is the immediate revenue impact of performance improvements?
e Is there a long-term impact (e.g., reduced churn) from performance
improvements?
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e What is the impact to a metric X? It is often the case that the initial
implementation of a new feature is inefficient. If the A/B test shows a
degradation to metric X, would speeding the implementation be enough to
address the degradation? In many cases, a new feature slightly slows down
the web site or application, so there is a tradeoff to make, and this
mapping helps.

e Where are the performance improvements more critical? For example,
increased latency for elements that users must scroll to see (also known as
“below the fold”) may be less critical. Similarly, right-pane elements have
been found to be less critical.

To conduct a controlled experiment, you want to isolate latency as the only
factor changed. It is very hard to improve performance or else developers
would have already made those changes, so we resort to a simple technique:
slowing down the web site or product. By slowing the Treatment relative to
Control it is easy to measure the impact on any metric, but you need to make
some assumptions.

Key Assumption: Local Linear Approximation

The key assumption for slowdown experiments is that the metric (e.g., rev-
enue) graph vs. performance is well approximated by a linear line around the
point matching today’s performance. This is a first-order Taylor-series
approximation, or linear approximation.

Figure 5.1 shows a graph depicting a common relationship between time
(performance) and a metric of interest (e.g., click-throughrate (CTR) or rev-
enue-per-user). Typically, the faster the site, the better (higher in this example)
the metric value.

When we slow down the Treatment, we move from the point where the
vertical line intersects the graph to the right, and we can measure the change to
the metric. The assumption we make is that if we were to move left of the
vertical line (improving performance), the vertical delta on the left would be
approximately the same as the one we measured on the right.

Is the assumption realistic? Two things make this a good assumption:

1. From our own experience as users, faster is better in search. It is hard to
think about reasons why there would be discontinuities or dramatic changes
in the graph, especially around today’s performance point. If we delayed by
three seconds, one can imagine a significant cliff, but for adding or sub-
tracting a tenth of a second, this is less likely.
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Today's Performance

Metric

Slowdown experiment
measures this

Page Load Time

Figure 5.1 Typical relationship between performance (time) and a metric of
interest

2. We can sample the graph at two points to see whether a linear approxima-
tion is reasonable. Specifically, Bing ran the slowdown experiment with a
100 msec and a 250 msec slowdown. The delta for the 250 msec experi-
ment was ~2.5 times that of the 100 msec study (within the confidence
intervals) for several key metrics, which supports the linearity assumption.

How to Measure Website Performance

Measuring website performance is not obvious. This section shares some of
the complexity involved and some of the assumptions made. These significant
details impact your experiment design. We go into details here to give a taste
of real-life complexity for something that appears simple; feel free to skim this
section.

To reliably measure latency, servers must be synchronized as requests are
typically handled by different servers and we have seen clock skew between
servers contribute to data quality issues (e.g., negative durations). It is very
important that servers sync their clocks often. Our examples do not mix client
and server times, because they can be in different time zones (see Chapter 13),
and client clocks are usually less reliable, sometimes years off (e.g., when their
batteries die).

Figure 5.2 shows a request for a highly optimized website, such as a search
engine. The steps are as follows:

1. The user makes a request at time TO, say typing a query into the browser
address bar or search box and hitting return or clicking on the
magnifying glass.
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Server
sends
chunk1
Server : Server sends
receives - chunk2, then
request chunks 3, 4,5 Post
onload
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Server — . . activities
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Client ./ : : N Vo
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TO T3 PLT T5 Té6
User Client Client Browser fires
initiates receives receives onload event
request chunk1 chunk2, for <body>.

requests Log sent
more assets

Figure 5.2 Measuring Page Load Time (PLT)

2. The request takes time to reach the server, and it arrives at time T1. T1-TO
seems extremely hard to estimate, but there is a nice trick we can deploy
that we explain after this numbered list.

3. On receiving the request, the server typically sends the first chunk of
HTML to the client, time T2.

This first chunk is independent of the request (e.g., query or URL
parameters), so can be served quickly. It typically contains the basic page
elements, such as the header, navigation elements, and JavaScript func-
tions. Providing the user with visible feedback that the request was received
is beneficial: the page typically clears, and a header displays with some
page decorations, sometimes called the chrome or frame. Since the server
takes time (to time T4) to compute the URL-dependent part of the page
(e.g., query, or URL parameters), the more “code” that can be shipped, the
faster the page will be, as the client and network are typically idle.

4. Attime T4, the server starts sending the rest of the page, which can involve
additional round trips for other assets (e.g., images).
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5. Attime T6, the browser fires the Onload event, indicating the page is ready.
At this point, it makes a log request, typically a simple 1x 1 image request
(beacon) or equivalent. That request reaches the server at time T7. There
may be other activities that happen after the Onload event and additional
logging (e.g., user actions like scrolls, hovers, and clicks).

The Page Load Time (PLT) the user experiences is T6—TO0, which we
approximate by measuring T7—T1. Because the time the initial request takes
to reach the server is likely to be very similar to the time it takes the Onload
event beacon to reach the server (both are small requests), these two deltas will
probably be very similar and allow us to approximate the user experience time.
In newer browsers that support new W3C (World Wide Web Consortium)
standards, Navigation Timing calls provide multiple PLT-related information
(see www.w3.org/TR/navigation-timing/). The above measurements are more
generic, and the numbers from the W3C Navigation Timings match well.

The Slowdown Experiment Design

What may seem like a trivial experiment turns out to be more complex. One
question is where to insert the slowdown? Bing initially slowed down sending
Chunkl1 (see Figure 5.2), but had too big an impact and was deemed unreason-
able because of the following:

1. Chunkl is sent from the server quickly because there is nothing to compute. It
is therefore unreasonable to say that we can improve the latency of Chunkl.

2. Chunkl is what gives the user the feedback that the request was properly
received by painting the page chrome or frame. Delaying that has multiple
negative effects unrelated to overall site performance.

The right place to delay is when the server finishes computing Chunk2, which
is the URL-dependent HTML. Instead of the server sending the HTML, we
delay the response, as if the server took longer to generate the query-dependent
part of the HTML.

How long should the delay be? There are several factors at play here:

e Every metric we compute has a confidence interval. We would like the
Treatment effect to be large so that we can estimate the “slope” more
accurately. Figure 5.3 shows two possible measurements at 100 msec and
250 msec the delay time axis. If both have a similar confidence interval size,
then measuring at 250 msec provides us with much tighter bounds on the
slope. This factor calls for making the delay larger.
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Metric

100 250

Delay Time (msec)

Figure 5.3 Confidence intervals around different delay times

e A longer delay implies that our first-order Taylor series approximation may
be less accurate. This factor calls for a shorter delay.

e A long delay causes more harm to our users, as we strongly believe that
faster is better and therefore slowing the experiences causes harm. This
factor calls for a shorter delay.

Another question is whether the delay is constant or some percentage, to
account for geographical network differences (e.g., Bing users in South Africa
have very slow page load times, so 250 msec delay may not feel like much).
Given that the experiment is modeling a back-end server-side delay, a constant
delay was deemed a good choice. If we wanted to model what happens relative
to network differences, then the experiment might be based on, for example,
payload size instead of latency.

Finally, there is a question of whether speedup is more important on the first
page or later pages in the session. Some speedup techniques (e.g., caching of
JavaScript) can improve the performance of later pages in a session.

Given the above factors, slowdowns of 100 msec and 250 msec were
determined to be reasonable choices by Bing.

Impact of Different Page Elements Differs

Performance of different areas of the page differs. The speed of showing the
algorithmic search results of Bing were critical and slowdowns had material
impact on key metrics, such as revenue and key user metrics.

What about other areas of the page? It turns out they are much less critical.
At Bing, some elements on the right pane are loaded late (technically, after the
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window.onload event). A slowdown-controlled experiment was run, like
that described above, delaying when the right-pane elements display by 250
msec. No statistically significant impact was detected for key metrics, despite
having almost 20 million users in the experiment.

PLT is often measured using the window.onload to mark the end of the
useful browser activity rather than the sequence described above. However, this
measurement has severe deficiencies with modern web pages. As Steve Souders
showed (2013), an Amazon page can render in 2.0 seconds above the fold
(Wikipedia contributors, Above the Fold 2014), that is, on the visible part of the
page, but the window.onload event fires at 5.2 seconds. Schurman and
Brutlag (2009) reported that being able to progressively render a page so that
the header displays early helps. The opposite is also true with Gmail, as a good
example: the window.onload fires at 3.3 seconds, at which point only the
progress bar is visible and the above-the-fold content displays at 4.8 seconds.

The term “perceived performance” often denotes the intuitive idea that users
start to interpret the page once enough of it is showing. The concept of
perceived performance is easier to state abstractly than it is to measure in
practice, and perception.ready () isn’t on any browser’s roadmap (Sou-
ders 2013). Multiple proposals have been developed to estimate perceived
performance, including:

o Time to first result. When a list displays, such as on Twitter, the time to the
first tweet is a possible metric.

o Above the Fold Time (AFT). You can measure the time until pixels above
the fold are painted (Brutlag, Abrams and Meenan 2011). Implementations
must use heuristics to handle videos, animated GIFs, rotating galleries, and
other dynamic content that changes the page above the fold. Thresholds can
be set for “percent of pixels painted” to avoid trivial elements of little
consequence from prolonging the measured time.

o Speed Index. This is a generalization of AFT (Meenan 2012) that averages
the time when visible elements on the page display. This does not suffer
from trivial elements showing late, but still suffers from dynamic content
changing above the fold.

o Page Phase Time and User Ready Time. Page Phase Time requires
identifying which rendering phase satisfies perceived performance, and
phases are determined by pixel-changing velocity. User Ready Time meas-
ures the time until the essential elements of the page (defined for each
context) are ready to use (Meenan, Feng and Petrovich 2013).

One way to avoid coming up with definitions for perceived performance is to
measure the time-to-user action, such as a click. This technique works well
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when there’s an expected action by the user. A more sophisticated variant of
time-to-click is time-to-successful-click, where success can be defined as a
click that does not result in the user coming back for 30 seconds, thus avoiding
“bait” clicks. Such metrics do not suffer from the heuristics needed for many
performance metrics and are robust to many changes. The main problem with
such metrics is that they work only when an action is expected. If a user issues
a query “time in Paris” and gets a good instant answer, there is nothing to click.

Extreme Results

While speed matters a lot, we have also seen some results we believe are
overstated. In a Web 2.0 talk by Marissa Mayer, then at Google, she described
an experiment where Google increased the number of search results on the
Search Engine Result Page (SERP) from ten to thirty (Linden 2006). She
claimed that traffic and revenue from Google searchers in the experimental
group dropped by 20%. Her explanation? The page took half a second more to
generate. Performance is a critical factor, but multiple factors were changed,
and we suspect that the performance only accounts for a small percentage of
the loss. See Kohavi et al. (2014) for details.

Conversely, Dan McKinley (2012), then at Etsy, claimed that a 200 msec
delay did not matter at all. It is possible that for Etsy users, performance is not
critical, but we believe a more likely hypothesis is that the experiment did not
have sufficient statistical power to detect the differences. Telling an organiza-
tion that performance doesn’t matter will make the site slower very quickly, to
the point where users abandon it in droves.

Finally, in rare scenarios, too fast may reduce user trust that some activity
was done, so some products add fake progress bars (Bodlewski 2017).

When reviewing results of experiments, ask yourself what trust level to
apply, and remember that even if the idea worked for a specific site, it may not
work as well for another. One thing you can do is report replications of prior
experiments (successful or not). This is how science works best.
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6

Organizational Metrics

If you can’t measure it, you can’t improve it
— Peter Drucker (longer version by Lord Kelvin)

[Watermelon Metric:] . . .teams think they are doing a great job hitting
green targets, their customers view it quite differently and only see red
— Barclay Rae (2014)

When optimizing for conversion, we often find clients trying to improve
engine torque while ignoring a flat tire
— Bryan Eisenberg and John Quarto-vonTivadar (2008)

Why you care? Organizations that want to measure their progress and
accountability need good metrics. For example, one popular way of running
an organization is to use Objectives and Key Results (OKRs), where an
Objective is a long-term goal, and the Key Results are shorter-term, measur-
able results that move towards the goal (Doerr 2018). When using the OKR
system, good metrics are key to tracking progress towards those goals.
Understanding the different types of organizational metrics, the important
criteria that these metrics need to meet, how to create and evaluate these
metrics, and the importance of iteration over time can help generate the
insights needed to make data-informed decisions, regardless of whether you
also run experiments.

Metrics Taxonomy

In a data-driven organization, metrics and the accompanying data analyses can
be used at every level, from top-level goal setting and accountability on down
through the teams. The discussion of what the metrics should be for an
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organization or a team is useful for aligning on goals, and subsequently
providing transparency and accountability on executing towards those goals
(Doerr 2018). This section focuses on organizational metrics overall, whereas
Chapter 7 discusses metrics specific for experimentation and Chapter 21
discusses the role of guardrail metrics for alerting in experiments.

In discussing organizational metrics, the taxonomy commonly used is goals,
drivers, and guardrails. This taxonomy is useful regardless of whether we are
talking about an organization that is an entire company or a specific team
within a larger organization.

Goal metrics, also called success metrics or true north metrics, reflect what
the organization ultimately cares about. When trying to come up with a goal
metric, we recommend first articulating what you want in words. Why does
your product exist? What does success look like for your organization? The
leaders of the organization must engage in answering these questions, and the
answers are often tied to a mission statement. For example, if Microsoft’s
mission is to empower every person and every organization on the planet to
achieve more, or Google’s mission is to organize the world’s information, then
their goals are often directly related to those missions.

Being able to articulate your goal in words is important, as the transform-
ation of that goal into metrics is often imperfect, and your goal metrics may be
proxies of what you really care about and require iteration over time. Having
people understand the limitations and differences between the metrics and the
articulation of the goal is critical to driving the business in the right direction.

Goal metrics are usually a single or a very small set of metrics that best
captures the ultimate success you are striving towards. These metrics may not
be easy to move in the short term because each initiative may have only a very
small impact on the metric, or because impacts take a long time to materialize.

Driver metrics, also called sign post metrics, surrogate metrics, indirect or
predictive metrics, tend to be shorter-term, faster-moving, and more-sensitive
metrics than goal metrics. Driver metrics reflect a mental causal model of what
it takes for the organization to succeed, that is, hypotheses on the drivers of
success rather than just what success looks like.

There are several useful metrics frameworks for thinking about what drives
success: The HEART framework (Happiness, Engagement, Adoption, Reten-
tion, and Task Success) (Rodden, Hutchinson and Fu 2010), Dave McClure’s
PIRATE framework (AARRR! Acquisition, Activation, Retention, Referral,
Revenue) (McClure 2007), or user funnels in general. These frameworks can
help break down the steps that lead to success. For example, before ultimately
achieving revenue, a typical company must acquire users and ensure that their
product is engaging enough to retain them.
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A good driver metric indicates that we are moving in the right direction to
move the goal metric(s).

Guardrail metrics guard against violated assumptions and come in two
types: metrics that protect the business and metrics that assess the trustworthi-
ness and internal validity of experiment results. Here, we focus on the first type
of organizational guardrails, while trustworthiness guardrail metrics are dis-
cussed in Chapter 21.

While our eyes are usually on the goal and driver metrics, guardrail metrics
are important to ensure we move towards success with the right balance and
without violating important constraints. For example, our goal may be to get as
many users as possible to register, but we don’t want the per-user engagement
level to drop drastically. Another example is a password management com-
pany. There might be a tradeoff between security (no hijackings or information
stolen), ease-of-use, and accessibility (i.e, how often users are locked out).
While security may be the goal, the ease-of-use and accessibility can be
guardrails. Finally, while page-load-time may not be a goal metric, we still
need to make sure that feature launches do not degrade load times (see
Chapter 5). Guardrail metrics are frequently more sensitive than goal or driver
metrics. See Chapter 21 for more examples of guardrail metrics.

While we find goal, driver, and guardrail metrics offer the right amount of
granularity and comprehensiveness, there are other business metric taxonomies
as well:

e Asset vs. engagement metrics: Asset metrics measure the accumulation of
static assets, like the total number of Facebook users (accounts) or total
number of connections. Engagement metrics measure the value a user
receives as a result of an action or by others using the product, such as a
session or a pageview.

o Business vs. operational metrics: Business metrics, such as revenue- per-
user or daily active user (DAU), track the health of the business. Operational
metrics, such as queries per second, track whether there are operational
concerns.

While we discuss metrics for experiments further in Chapter 7, there are also
other types of metrics commonly used in experimentation. Data quality
metrics ensure the internal validity and trustworthiness of the underlying
experiments (see also Chapter 3 and Chapter 21). Diagnosis or debug metrics
are helpful when debugging a scenario where the goal, driver, or guardrail
metrics indicate there is a problem. They might provide additional granularity
or other information typically too detailed to track on an ongoing basis but
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useful when drilling down into a situation. For example, if click-through rate
(CTR) is a key metric, you might have 20 metrics to indicate clicks on certain
areas of the page. Or, if revenue is a key metric, you might want to decompose
revenue into two metrics: a revenue indicator that is a Boolean (0/1) indicating
whether the user purchased at all; and a Conditional Revenue metric that
comprises the revenue if the user purchased and is null otherwise (when
averaged, only the revenue from purchasing users is averaged). Average
overall revenue is the product of these two metrics, but each tells a different
story about revenue. Did it increase/decrease because more/less people pur-
chased or because the average purchase price changed?

Regardless of the taxonomy used, having discussions on metrics is useful, as
agreeing on metrics requires clear goal articulation and alignment. The metrics
can subsequently be used for goal setting at the company level, team level,
feature level or individual level, and be used for everything from executive
reporting to engineering system monitoring. Iterating on metrics over time is
also expected, both as the organization evolves and the understanding of the
metrics evolves.

We often need to measure goals, drivers, and guardrails at both the company
level and team level. Each team is likely to contribute differently to the overall
success of the company. Some teams might be more focused on adoption,
others on happiness, still others on retention or performance or latency. Each
team must articulate their goal and hypothesis on how their metrics relate to the
overall company metrics. The same metric may play a different role for
different teams. Some teams may use latency or other performance metrics
as a guardrail, while an infrastructure team may use those same latency or
performance metrics as their goal metric and use the other business metrics as
their guardrail metrics.

For example, let’s say you are working on a product where the overall goal
metric is long-term revenue, and driver metrics at a business level are user
engagement and retention. Now, you have a team that is working on a support
site for this product. This team tried to set “time-on-site” as the key driver
metric to improve, but is more time on the site better or worse? This type of
discussion is useful at every level of the company to understand and align on.

Parmenter in Key Performance Indicators (2015) uses the diagram shown in
Figure 6.1 to emphasize the importance of aligning goal and driver metrics to
your overall business strategy.

Depending on organization size and objectives, you may have multiple
teams, each with their own goal, driver, and guardrail metrics, and all of which
must align with your overall goal, driver, guardrail metrics.
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Figure 6.1 It is important to align each team’s metrics with the overall goal and
strategic direction

Formulating Metrics: Principles and Techniques

Now that you have it down in words what success looks like and possible

drivers, let’s start formulating metrics. This is when we take a qualitative

concept to a concrete, quantifiable definition. In some cases, such as revenue,

the answer may be obvious. However, a company may define success as long-

term revenue, which is harder to measure than revenue realized today. Other

difficult-to-measure concepts of success include user happiness and user trust.
Key principles when developing goal and driver metrics are:

1. Ensure that your goal metrics are:

e Simple: easily understood and broadly accepted by stakeholders.

e Stable: it should not be necessary to update goal metrics every time you
launch a new feature.

2. Ensure that driver metrics are:

o Aligned with the goal: It is important to validate that the driver metrics are
in fact drivers of success. One common technique for this validation is to
run experiments expressly for this purpose. We discuss this further below.

e Actionable and relevant: Teams must feel that they can act on the
levers (e.g., product features) to move these metrics.

e Sensitive: Driver metrics are leading indicators for goal metrics. Ensure
that they are sensitive enough to measure impact from most initiatives.

e Resistant to gaming: Because driver metrics and your goal metrics
measure success, don’t make them easily gameable. Think through the
incentives and what behavior a metric may drive and how it might be
gamed. See Sidebar: Gameability later in this chapter.

With these principles in mind, here are some helpful techniques and consider-
ations for developing metrics:

o Use hypotheses from less-scalable methods to generate ideas, and then
validate them in scalable data analyses to determine a precise definition
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(see Chapter 10). For example, user happiness or user task success might
only be directly measurable through user surveys, a methodology that is not
scalable. However, we can conduct surveys or user experience research
(UER) studies (see Chapter 10) to observe the types of behavior typically
correlated with success and happiness. You can explore those behavior
patterns using online logs data analysis at scale to determine whether those
metrics work as a high-level metric. One concrete example is bounce rate,
which is the proportion of users that stay only a short time on a website. We
may notice that a short stay correlates with dissatisfaction. Combining that
observation with a data analysis helps determine the exact threshold (should
the threshold be 1 pageview? 20 seconds?) needed to precisely define the
metric (Dmitriev and Wu 2016, Huang, White and Dumais 2012).

e Consider guality when defining goal or driver metrics. A click on a search
result is a “bad” click if the user clicks the back button right away; a new
user signup is a “good” signup if the user actively engages with the website;
a LinkedlIn profile is a “good” profile if it contains sufficient information to
represent the user, such as education history or current and past positions.
Building a quality concept, such as with human evaluation (see Chapter 10),
into your goal and driver metrics makes it much more likely that movement
from these metrics leads to a solid interpretation on which to base decisions.

e When incorporating statistical models in the definition of a metric, it is
essential to keep the model interpretable and validated over time. For
instance, to measure long-term revenue from a subscription, it is common
to compute the lifetime value (LTV) based on predicted survival probabil-
ity. However, if the survival function is too complicated, it may be hard to
get buy-in from stakeholders, even harder if a sudden drop on the metric
needs to be investigated. Another example is Netflix using bucketized watch
hours as driver metrics because they are interpretable and indicative of long-
term user retention (Xie and Aurisset 2016).

e Sometimes it may be easier to precisely measure what you do not want,
such as user dissatisfaction or unhappiness, than it is to measure what you
want. For example, how long does a user have to stay on a site to be
considered “satisfied?” On sites with tasks, like search engines, a short visit
to a site pointed to from a search result is more often correlated with a user
being unhappy than a long visit. That said, a long visit can imply either that
a user is finding what they need or that they are trying hard to do something
and in fact getting frustrated. In this way, negative metrics are useful as
guardrail or debug metrics.

e Always remember that metrics are themselves proxies; each has its own set
of failure cases. For example, a search engine may want to use CTR to

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:55, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.009
https://www.cambridge.org/core

96 6 Organizational Metrics

measure user engagement but driving just CTR may lead to increased
clickbait. In such cases, you must create additional metrics to measure the
edge cases. In this example, one possibility is to use human evaluation (see
Chapter 10) as a metric to measure relevance and counterbalance a tendency
towards rewarding clickbait.

Evaluating Metrics

We have outlined several principles to follow when developing metrics. Most
metrics evaluation and validation happen during the formulation phase, but
there is work that needs to be done over time and continuously. For example,
before adding a new metric, evaluate whether it provides additional information
compared to your existing metrics. Lifetime value (LTV) metrics must be
evaluated over time to ensure that prediction errors stay small. Metrics heavily
relied on for experimentation must be evaluated periodically to determine
whether they encouraged gaming (i.e., whether a threshold used in a metric
definition cause disproportional focus on moving users across the threshold).

One of the most common and challenging evaluations is establishing the
causal relationship of driver metrics to organizational goal metrics, that is,
whether this driver metric really drives the goal metrics. In for-profit organiza-
tions, Kaplan and Norton wrote “Ultimately, causal paths from all the meas-
ures on a scorecard should be linked to financial objectives” (Kaplan and
Norton 1996). Hauser and Katz (Hauser and Katz 1998) write, “the firm must
identify metrics that the team can affect today, but which, ultimately, will
affect the firm’s long-term goals.” Spitzer (Spitzer 2007) wrote that “measure-
ment frameworks are initially composed of hypotheses (assumptions) of the
key measures and their causal relationships. These hypotheses are then tested
with actual data, and can be confirmed, disconfirmed, or modified.” This
characteristic is the hardest to satisfy, as we often don’t know the underlying
causal model, and merely have a hypothesized mental causal model.

Here are a few high-level approaches to tackle causal validation that you can
also apply to other types of metrics evaluation:

e Utilize other data sources such as surveys, focus groups, or user experience
research (UER) studies to check whether they all point in the same
direction.

e Analyze observational data. While it is difficult to establish causal relation-
ships with observational data (as we discuss in Chapter 11), a carefully
conducted observational study can help invalidate hypotheses.
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e Check whether similar validation is done at other companies. For instance,
several companies have shared studies that show how site speed impacts
revenue and user engagement (see Chapter 5). Another example is studies
that show the impact of app size on app downloads (Reinhardt 2016,
Tolomei 2017).

o Conduct an experiment with a primary goal of evaluating metrics. For
example, to determine whether a customer loyalty program increases cus-
tomer retention and therefore customer LTV, run experiments that slowly
rollout the customer loyalty program, and measure retention and customer
LTV. We caution that these experiments often test a relatively narrow
hypothesis, so it still requires work to generalize the results.

e Use a corpus of historical experiments as “golden” samples for evaluating
new metrics. It is important that these experiments are well understood and
trustworthy. We can use these historical experiments to check for sensitivity
and causal alignment (Dmitriev and Wu 2016).

Note that the challenge of relating driver metrics to goal metrics also applies
for guardrail metrics. See our example in Chapter 5 of how to conduct an
experiment to measure the impact of latency, a guardrail metric, on goal
metrics.

Evolving Metrics

Metric definitions evolve over time. Even if the concept stays the same, the
exact definition may still change. Change can happen because:

e The business evolved: The business may have grown and created new
business lines. This could lead to the business changing its focus, such as
shifting from adoption to engagement and retention. One specific type of
evolution to call out is a shift in user base. When calculating metrics or
running experiments, note that all of that data is coming from the existing
user base. Especially for early-stage products or start-ups, early adopters
may not be representative of the user base that a business desires in the
long-term (Forte 2019).

e The environment evolved: The competitive landscape may have changed,
more users may be aware of privacy concerns, or new government policies
may be in effect. All of these changes can shift the business focus or
perspective, and therefore what you measure with metrics.

e Your understanding of the metrics evolved: Even metrics you carefully
evaluated during the development phase, when observing its performance
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in action (e.g., looking for gameability), you may discover areas of
improvement that leads to more granularity or different metric formulations.
Hubbard (Hubbard 2014) discusses Expected Value of Information (EVI),
which is a concept that captures how additional information helps you make
decisions. Taking the time and effort to investigate metrics and modify
existing metrics has high EVI. It is not enough to be agile and to measure,
you must make sure your metrics guide you in the right direction.

Certain metrics may evolve more quickly than others. For example, driver,
guardrail, and data quality metrics may evolve more quickly than goal metrics,
often because those are driven by methodology improvements rather than
fundamental business or environmental evolutions.

Because metrics will evolve over time, you should become more structured
in handling changes in metrics as your organization grows. Specifically, you
will need infrastructure to support the evaluation of new metrics, the associated
schema changes, backfilling of data needed, and more.

Additional Resources

There are several great books about metrics, measurements, and performance
indicators (Spitzer 2007, Parmenter 2015, McChesney, Covey and Huling
2012). Spitzer notes that “What makes measurement so potent is its capacity
to instigate informed action—to provide the opportunity for people to engage
in the right behavior at the right time.” In the context of controlled experi-
ments, because the Treatment is the cause of the impact to each metric (with
high probability for highly statistically significant effects), formulating the key
metrics is an assessment of the value of an idea (the Treatment) on some axis
of interest.

SIDEBAR: Guardrail Metrics

There are two types of guardrail metrics: trustworthiness-related guardrail
metrics and organizational guardrail metrics. Trustworthiness-related guardrail
metrics are discussed in detail in Chapter 21, as those are necessary to ensure
that experimental results are trustworthy. Here we discuss organizational
guardrail metrics.

As we discuss in Chapter 5, an increase in latency of even a few millisec-
onds can result in revenue loss and a reduction in user satisfaction. Thus,
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latency is often used as a guardrail metric because it is so sensitive, especially
relative to revenue and user satisfaction metrics. Most teams are typically
working on new features that are trying to move goal or driver metrics but,
in doing so, they check latency and try to ensure that their feature does not
increase latency. If it does, then that triggers a discussion about tradeoffs such
as whether the impact of the new feature is worth the impact from the increase
in latency, whether there are ways to mitigate the increase, or whether there are
ways to offset the new feature with other features that improve (decrease)
latency.

Many organizational guardrail metrics are similar to latency, sensitive
metrics that measure phenomena known to impact the goal or driver metrics,
but that most teams should not be affecting. Examples of such metrics include:

1. HTML response size per page. On a website, the server response size is an
early indicator that a large amount of code (such as JavaScript) was
introduced. Alerting on such a change is a great way to uncover a possibly
sloppy piece of code that could be optimized.

2. JavaScript errors per page. Degrading (i.e., increasing) the average number
of errors on the page is a ship blocker. Segmenting by browsers helps to
identify whether the JavaScript issue is browser dependent.

3. Revenue-per-user. A team that works on one part of the product, such as
relevance, may not realize that they are hurting revenue. Revenue-per-user
usually has high statistical variance, so it is not sensitive as a guardrail;
more sensitive variants can be great alternatives, such as revenue indicator-
per-user (was there revenue for user: yes/no), capped revenue-per-user
(anything over $X is capped to $X), and revenue-per-page (there are more
page units, although care must be taken to correctly compute the variance,
see Chapter 22).

4. Pageviews-per-user. Because many metrics are measured per page (such as,
CTR), a change to pageviews-per-user could imply that many metrics
changed. It is natural to focus on the numerator, but if pageviews-per-user
changes, it is the denominator that changes, which requires thought. If the
change is unexpected, it is worth reviewing the reasons carefully (Dmitriev
et al. 2017). Note that pageviews-per-user may not work as a guardrail in all
cases; for example, if you are testing an infinite scroll feature, then page-
views-per-user will almost certainly change.

5. Client crashes. For client software (e.g., Office Word/PowerPoint/Excel,
Adobe Reader) or phone applications (e.g., Facebook, LinkedIn, Minecraft,
Netflix), crash rate is a critical guardrail metric. In addition to a count metric
(crashes-per-user), an indicator is commonly used (Did the user crash
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during the experiment?), which is averaged over all users, as indicators
have lower variance and thus show statistical significance earlier.

Different teams may swap which metrics are their goal, driver, and guardrail
metrics. For example, while most teams may use the canonical goal, driver,
and guardrail metrics, an infrastructure team, for example, may use perform-
ance or organizational guardrail metrics as their goal (and use the product
team’s goal and driver metrics as their guardrails). Just like driver metrics, it is
important to establish the causal relationship between guardrail metrics and
goal metrics, as was done in Chapter 5.

SIDEBAR: Gameability

Your goal and driver metrics need to be hard to game: when given a numerical
target, humans can be quite ingenious, especially when the measures are tied to
rewards. There are numerous examples throughout history:

e Vasili Alexeyev, a famous Russian super-heavyweight weightlifter, was
offered an incentive for every world record he broke. The result of this
contingent measurement was that he kept breaking world records a gram or
two at a time to maximize his reward payout (Spitzer 2007).

o A manager of a fast-food restaurant strived to achieve an award for attaining
a perfect 100 percent on the restaurant’s “‘chicken efficiency” measure (the
ratio of how many pieces of chicken sold to the number thrown away). He
did so by waiting until the chicken was ordered before cooking it. He won
the award but drove the restaurant out of business because of the long wait
times (Spitzer 2007).

e A company paid bonuses to its central warehouse spare parts personnel for
maintaining low inventory. As a result, necessary spare parts were not
available in the warehouse, and operations had to be shut down until the
parts could be ordered and delivered (Spitzer 2007).

e Managers at a hospital in the United Kingdom were concerned about the
time it was taking to treat patients in the accident and emergency depart-
ment. They decided to measure the time from patient registration to being
seen by a house doctor. The nursing staff thus began asking the paramedics
to leave their patients in the ambulance until a house doctor was ready to see
them, thus improving the “average time it took to treat patients” (Parmenter
2015).

o In Hanoi, under French colonial rule, a program paying people a bounty for
each rat tail handed in was intended to exterminate rats. Instead, it led to the
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farming of rats (Vann 2003). A similar example, although likely anecdotal,
is mentioned with regards to cobra snakes, where presumably the British
government offered bounty for every dead cobra in Delhi and enterprising
people began to breed cobras for the income (Wikipedia contributors, Cobra
Effect 2019).

o Between 1945 and 1960, the federal Canadian government paid 70 cents a
day per orphan to orphanages, and psychiatric hospitals received $2.25 per
day, per patient. Allegedly, up to 20,000 orphaned children were falsely
certified as mentally ill so the Catholic Church could get $2.25 per day, per
patient (Wikipedia contributors, Data dredging 2019).

e Funding fire departments by the number of fire calls made is intended to
reward the fire departments that do the most work. However, it may
discourage them from fire-prevention activities that reduce the number of
fires (Wikipedia contributors, Perverse Incentive 2019).

While these examples show the importance of choosing metrics carefully,
how does this apply in the online domain? One common scenario is to use
short-term revenue as a key metric. However, you could increase short-term
revenues by raising prices or plastering a website with ads, and either of those
would likely lead to users abandoning the site and customer LTV declining.
Customer LTV is a useful guiding principle when considering metrics. More
generally, many unconstrained metrics are gameable. A metric that measures
ad revenue constrained to space on the page or to a measure of quality is a
much better metric to ensure a high-quality user experience. How many
queries return no results is gameable without some quality constraint because
one can always return bad results.

Generally, we recommend using metrics that measure user value and
actions. You should avoid vanity metrics that indicate a count of your actions,
which users often ignore (the count of banner ads is a vanity metric, whereas
clicks on ads indicates potential user interest). At Facebook, creating user
“Likes” is an example where there is a Ul feature that both captures user
actions and is a fundamental part of the user experience.
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7

Metrics for Experimentation and the
Overall Evaluation Criterion

Tell me how you measure me, and I will tell you how I will behave
— Eliyahu M. Goldratt (1990)

The first rule is that a measurement—any measurement—is better than
none. But a genuinely effective indicator will cover the output of the
work unit, and not simply the activity involved. Obviously, you measure
a salesman by the orders he gets (output), not by the calls he makes
(activity)

— Andrew S. Grove in High Output Management (1995)

Why you care: To design and run a good online controlled experiment, you
need metrics that meet certain characteristics. They must be measurable in
the short term (experiment duration) and computable, as well as sufficiently
sensitive and timely to be useful for experimentation. If you use multiple
metrics to measure success for an experiment, ideally you may want to
combine them into an Overall Evaluation Criterion (OEC), which is
believed to causally impact long-term objectives. It often requires multiple
iterations to adjust and refine the OEC, but as the quotation above, by
Eliyahu Goldratt, highlights, it provides a clear alignment mechanism to
the organization.

From Business Metrics to Metrics
Appropriate for Experimentation

As discussed in Chapter 6, data-driven organizations often use goal, driver,
and guardrail metrics to align and execute on business goals with transparency
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and accountability. However, these business metrics may not be directly useful
for online experimentation, as metrics for experimentation must be:

e Measurable: Even in an online world, not all effects are easily measurable.
For example, post-purchase satisfaction can be challenging to measure.

e Attributable: To compute the metrics for experiment purposes, we must be
able to attribute metric values to the experiment variant. For example, to
analyze whether the Treatment is causing a higher app crash rate than the
Control, we must be able to attribute an app crash to its variant. This
attribution may not be available for metrics provided by other data pro-
viders, such as third parties.

e Sensitive and timely: Experiment metrics must be sensitive enough to
detect changes that matter in a timely fashion. Sensitivity depends on the
statistical variance of the underlying metric, the effect size (the delta
between Treatment and Control in an experiment), and the number of
randomization units (such as users). As an extreme example of an insensi-
tive metric, you could run a controlled experiment and look at the stock
price of the company. Because the ability of routine product changes to
impact the stock price during the experiment period is practically zero, the
stock-price metric will not be sufficiently sensitive. At the other extreme,
you could measure the existence of the new feature (is it showing?), and that
will be very sensitive, but not informative about its actual value to users.
Between the two extremes, click-throughs on the new feature will be
sensitive but highly localized: a click-through metric will not capture the
impact on the rest of the page and possible cannibalization of other features.
A whole-page click-through metric (especially if penalized for quick-backs
where users come back quickly), a measure of “success” (like a purchase),
and time-to-success are usually good key metrics sensitive enough for
experimentation. See Dmitriev and Wu (2016) for an in-depth discussion
on sensitivity. Here are a couple more common examples:

o With ads revenue, it is common for a few outliers to have a dispropor-
tionally high influence on revenue, like clicks with very high cost-per-
click. While a dollar is a dollar and these expensive clicks should be
included in business reporting, these large outliers inflate variance and
make it harder to detect Treatment effects. For this reason, you could
consider a truncated version of revenue for experiments as an additional
more sensitive metric (see Chapter 22).

o Consider a subscription contract that has a yearly renewal cycle. Unless
you are willing to run a year-long experiment, it will be hard to measure
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104 7 Metrics for Experimentation and the OEC

the impact on the renewal rate. For this case, instead of using renewal rate
in experiments, it is common to find surrogate metrics, such as usage,
which are early indicators of satisfaction that will lead to renewals.

Based on these considerations, you can see that not all metrics that are used for
business reporting purposes are appropriate for experimentation. We do agree
with Andrew Grove’s quotation above: when in doubt, measure more, but
more importantly: think hard about what you are optimizing for. Declaring
time-on-site as a metric to optimize without qualifiers like (good/successful
session) will lead to interstitial pages and a slow site, which will increase the
metric in the short term, but cause abandonment in the long term.

In general, for experimentation, you will be choosing the subset of business
goal, driver, and organizational guardrail metrics that meet these measurabil-
ity, computability, sensitivity, and timeliness characteristics. Then you may
need to further augment that metric set with:

o Additional surrogate metrics for your business goals and drivers

o More granular metrics, such as feature-level metrics to help understand
movements of specific features. For example, a page-click-through rate
may be broken into click-through rate on the dozens of features on the page.

e Additional trustworthiness guardrails (see Chapter 21) and data quality
metrics

e Diagnostic and debug metrics that provide information too detailed to track
on an ongoing basis but useful when drilling into a situation where the goal,
driver, or guardrail metrics indicate a problem.

Given all the different taxonomies and use cases for metrics, a typical experi-
ment scorecard will have a few key metrics, and hundreds to thousands of
other metrics, all of which can be segmented by dimensions, such as browsers
and markets.

Combining Key Metrics into an OEC

Given the common situation where you have multiple goal and driver metrics,
what do you do? Do you need to choose just one metric, or do you keep more
than one? Do you combine them all into single combination metric?

While some books advocate focusing on just one metric (Lean Analytics
(Croll and Yoskovitz 2013) suggest the One Metric that Matters (OMTM) and
The 4 Disciplines of Execution (McChesney, Covey and Huling 2012) suggest
focusing on Wildly Important Goal (WIG)), we find that motivating but an
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oversimplification. Except for trivial scenarios, there is usually no single
metric that captures what a business is optimizing for. Kaplan and Norton
(1996) give a good example: imagine entering a modern jet airplane. Is there a
single metric that you should put on the pilot’s dashboard? Airspeed? Altitude?
Remaining fuel? You know the pilot must have access to these metrics and
more. When you have an online business, you will have several key goal and
driver metrics, typically measuring user engagement (e.g., active days, ses-
sions-per-user, clicks- per-user) and monetary value (e.g., revenue-per-user).
There is usually no simple single metric to optimize for.

In practice, many organizations examine multiple key metrics, and have a
mental model of the tradeoffs they are willing to accept when they see any
particular combination. For example, they may have a good idea about how
much they are willing to lose (churn) users if the remaining users increase their
engagement and revenue to more than compensate. Other organizations that
prioritize growth may not be willing to accept a similar tradeoff.

Oftentimes, there is a mental model of the tradeoffs, and devising a single
metric — an OEC — that is a weighted combination of such objectives (Roy
2001, 50, 405-429) may be the more desired solution. And like metrics
overall, ensuring that the metrics and the combination are not gameable is
critical (see Sidebar: Gameability in Chapter 6). For example, basketball
scoreboards don’t keep track of shots beyond the two- and three-point lines,
only the combined score for each team, which is the OEC. FICO credit scores
combine multiple metrics into a single score ranging from 300 to 850. The
ability to have a single summary score is typical in sports and critical for
business. A single metric makes the exact definition of success clear and has a
similar value to agreeing on metrics in the first place: it aligns people in an
organization about the tradeoffs. Moreover, by having the discussion and
making the tradeoffs explicit, there is more consistency in decision making
and people can better understand the limitations of the combination to deter-
mine when the OEC itself needs to evolve. This approach empowers teams to
make decisions without having to escalate to management and provides an
opportunity for automated searches (parameter sweeps).

If you have multiple metrics, one possibility proposed by Roy (2001) is to
normalize each metric to a predefined range, say O-1, and assign each a
weight. Your OEC is the weighted sum of the normalized metrics.

Coming up with a single weighted combination may be hard initially, but
you can start with classifying your decisions into four groups:

1. If all key metrics are flat (not statistically significant) or positive (statistic-
ally significant), with at least one metrics positive, then ship the change.
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2. If all key metrics are flat or negative, with at least one metric negative, then
don’t ship the change.

3. If all key metrics are flat, then don’t ship the change and consider either
increasing the experiment power, failing fast, or pivoting.

4. If some key metrics are positive and some key metrics are negative, then
decide based on the tradeoffs. When you have accumulated enough of these
decisions, you may be able to assign weights.

If you are unable to combine your key metrics into a single OEC, try to minimize
the number of key metrics. Pfeffer and Sutton (1999) warn about the Otis Redding
problem, named after the famous song “Sitting by the Dock of the Bay,” which
has this line: “Can’t do what ten people tell me to do, so I guess I'll remain the
same.” Having too many metrics may cause cognitive overload and complexity,
potentially leading the organization to ignore the key metrics. Reducing the
number of metrics also helps with the multiple comparison problems in Statistics.

One rough rule of thumb is to try to limit your key metrics to five. While
using a strong 0.05 p-value threshold by itself can be abused — p-hacked, if
you will (Wikipedia contributors, Multiple Comparisons problem 2019)— we
can still use the underlying statistical concept as a way to understand this
heuristic. Specifically, if the Null hypothesis is true (no change), then the
probability of a p-value < 0.05 for a single metric is 5%. When you have k
(independent) metrics, the probability of having at least one p-value < 0.05 is
1 —(1—0.05)". Fork=5, you have a 23% probability of seeing something
statistically significant. Fork=10, that probability rises to 40%. The more
metrics you have, the higher the chance that one would be significant, causing
potential conflicts or questions.

One final benefit of an OEC that is agreed upon: you can automatically ship
changes (both simple experiments and parameter sweeps).

Example: OEC for E-mail at Amazon

At Amazon, a system was built to send e-mails based on programmatic
campaigns that targeted customers based on various conditions, such as
(Kohavi and Longbotham 2010):

e Previously bought books by an author with a new release: A campaign
e-mailed them about the new release.

e Purchase history: A program using Amazon’s recommendation algorithm
sent an e-mail like this: “Amazon.com has new recommendations for you
based on items you purchased or told us you own.”
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e Cross-pollination: Many programs were very specific and defined by
humans to e-mail product recommendations to customers who bought items
from specific combinations of product categories.

The question is what OEC should be used for these programs? The initial
OEC, or “fitness function,” as it was called at Amazon, gave credit to a
program based on the revenue it generated from users clicking-through on
the e-mail.

The problem is that this metric is monotonically increasing with e-mail
volume: more campaigns and more e-mails can only increase revenue, which
led to spamming users. Note that this property of increasing revenue with
e-mail volume is true even when comparing revenue from the Treatment users
(those receiving the e-mail) to Control users (those who don’t).

Red flags went up when users began complaining about receiving too many
e-mails. Amazon’s initial solution was to add a constraint: a user can only
receive an e-mail every X days. They built an e-mail traffic cop, but the
problem was that it became an optimization program: which e-mail should
be sent every X days when multiple e-mail programs want to target the user?
How could they determine which users might be open to receiving more
e-mails if they found them truly useful?

Their key insight was that the click-through revenue OEC is optimizing for
short-term revenue instead of user lifetime value. Annoyed users unsubscribe
and Amazon then loses the opportunity to target them in the future. They built
a simple model to construct a lower bound on the user lifetime opportunity loss
when a user unsubscribes. Their OEC was:

OEC = ZRevi — s*kunsubscribe_lifetime_loss / n
i

where:

e | ranges over e-mail recipients for the variant

e ;s is the number of unsubscribes in the variant

e unsubscribe_lifetime_loss is the estimated revenue loss of not being able to
e-mail a person for “life”

e 1 is the number of users in the variant.

When they implemented this OEC with just a few dollars assigned to unsub-
scribe lifetime loss, more than half of the programmatic campaigns were
showing a negative OEC!

More interestingly, the realization that unsubscribes have such a big loss led
to a different unsubscribe page, where the default was to unsubscribe from this
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“campaign family,” not from all Amazon e-mails, drastically diminishing the
cost of an unsubscribe.

Example: OEC for Bing’s Search Engine

Bing uses two key organizational metrics to measure progress: query share and
revenue, as described in Trustworthy online controlled experiments: Five
puzzling outcomes explained (Kohavi et al. 2012). The example shows how
short-term and long-term objectives can diverge diametrically. This problem is
also included in Data Science Interviews Exposed (Huang et al. 2015).

When Bing had a ranker bug that resulted in very poor results being shown
to users in a Treatment, two key organizational metrics improved significantly:
distinct queries per user went up over 10%, and revenue-per-user went up over
30%. What should the OEC for a search engine be? Clearly, the search
engine’s long-term goals do not align with these two key metrics in experi-
ments. If they did, search engines would intentionally degrade quality to raise
query share and revenue!

The degraded algorithmic results (the main search engine results shown to
users, also known as the 10 blue links) forced people to issue more queries
(increasing queries-per-user) and click more on ads (increasing revenue). To
understand the problem, let’s decompose query share:

Monthly query share is defined as distinct queries for the search engine
divided by distinct queries for all search engines over one month. Distinct
queries per month decomposes to the product of these three terms as shown in
Equation 7.1:

Users  Sessions  Distinct queries

7.1
nMonthx User Session .1y

where the second and third terms in the product are computed over the month,
and a session is defined as user activity that begins with a query and ends with
30 minutes of inactivity on the search engine.

If the goal of a search engine is to allow users to find their answer or
complete their task quickly, then reducing the distinct queries per task is a
clear goal, which conflicts with the business objective of increasing query
share. As this metric correlates highly with distinct queries per session (more
easily measurable than tasks), distinct queries alone should not be used as an
OEC for search experiments.

Given the decomposition of distinct queries shown in Equation 7.1, let’s
look at the three terms:
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1. Users per month. In a controlled experiment, the number of unique users is
determined by the design. For example, in an A/B test with 50/50 split, the
number of users that fall in each variant will be approximately the same, so
you cannot use this term as part of the OEC for controlled experiments.

2. Distinct queries per task should be minimized, but it is hard to measure.
You can use the metric distinct queries per session as a surrogate; however,
this is a subtle metric because increasing it may indicate that users have to
issue more queries to complete the task but decreasing it may indicate
abandonment. Thus, you can aim to decrease this metric as long as you
also check that the task is successfully completed (i.e., abandonment does
not increase).

3. Sessions-per-user is the key metric to optimize (increase) in controlled
experiments. Satisfied users visit more often.

Revenue per user should likewise not be used as an OEC for search and ad
experiments without adding other constraints. When looking at revenue
metrics, we want to increase them without negatively impacting engagements
metrics. A common constraint is to restrict the average number of pixels that
ads can use over multiple queries. Increasing revenue per search given this
constraint is a constraint optimization problem.

Goodhart’s Law, Campbell’s Law, and the Lucas Critique

The OEC must be measurable in the short term (the duration of an experiment)
yet believed to causally drive long-term strategic objectives. Goodhart’s law,
Campbell’s law, and the Lucas Critique all highlight that correlation does not
imply causation and that in many situations organizations that pick an OEC are
fooled by correlations.

Charles Goodhart, a British economist, originally wrote the law: “Any
observed statistical regularity will tend to collapse once pressure is placed
upon it for control purposes” (Goodhart 1975, Chrystal and Mizen 2001).
Today it’s more common to reference Goodhart’s law as: “When a measure
becomes a target, it ceases to be a good measure” (Goodhart’s law 2018,
Strathern 1997).

Campbell’s law, named after Donald Campbell, states that “The more any
quantitative social indicator is used for social decision-making, the more
subject it will be to corruption pressures and the more apt it will be to distort
and corrupt the social processes it is intended to monitor” (Campbell’s law
2018, Campbell 1979).
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Lucas critique (Lucas critique 2018, Lucas 1976) observes that relationships
observed in historical data cannot be considered structural, or causal. Policy
decisions can alter the structure of economic models and the correlations that
held historically will no longer hold. The Phillips Curve, for example, showed
a historical negative correlation between inflation and unemployment; over the
study period of 1861 —1957 in the United Kingdom: when inflation was high,
unemployment was low and vice versa (Phillips 1958). Raising inflation in the
hope that it would lower unemployment assumes an incorrect causal relation-
ship. As a point in fact, in the 1973-1975 US recession, both inflation and
unemployment increased. In the long run, the current belief is that the rate of
inflation has no causal effect on unemployment (Hoover 2008).

Tim Harford addresses the fallacy of using historical data by using the
following example (Harford 2014, 147): “Fort Knox has never been robbed,
so we can save money by sacking the guards.” You can’t look just at the
empirical data; you need also to think about incentives. Obviously, such a
change in policy would cause robbers to re-evaluate their probability of
success.

Finding correlations in historical data does not imply that you can pick a
point on a correlational curve by modifying one of the variables and expecting
the other to change. For that to happen, the relationship must be causal, which
makes picking metrics for the OEC a challenge.
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8
Institutional Memory and Meta-Analysis

Individuals sometimes forgive, but bodies and societies never do
— Lord Chesterfield (1694—1773)

Why you care: As your organization moves into the “Fly” maturity phase,
institutional memory, which contains a history of all experiments and changes
made, becomes increasingly important. It can be used to identify patterns that
generalize across experiments, to foster a culture of experimentation, to
improve future innovations, and more.

What Is Institutional Memory?

After fully embracing controlled experiments as a default step in the innov-
ation process, your company can effectively have a digital journal of all
changes through experimentation, including descriptions, screen shots, and
key results. Each of the hundreds or even thousands of experiments run in the
past is a page in the journal, with precious and rich data on each change
(launched or not). This digital journal is what we refer to as Institutional
Memory. This section is about how to utilize the institutional memory through
meta-analysis, and mining data from all these historical experiments.

It goes without saying that you need to capture and organize data as part of
institutional memory. Having a centralized experimentation platform, where
all changes are tested, certainly makes it easier. It is highly recommended that
you capture meta information on each experiment, such as who the owners are;
when the experiment started; how long it ran; descriptions and screen shots if
the change was visual. You should also have results summarizing how much
impact the experiment had on various metrics, including a definitive scorecard
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with triggered and overall impact (see Chapter 20). Lastly, you should capture
the hypothesis the experiment is based on; what decision was made and why.

Why Is Institutional Memory Useful?

What can you get from mining data from all these experiments? This is what
we refer to here as meta-analysis. We organize the use cases into these five
categories:

1. Experiment culture. Having a summary view of past experiments can
really highlight the importance of experimentation and help solidify the
culture. Here are a few concrete examples of meta-analysis to do:

o How has experimentation been contributing to the growth of the
broader organizational goals? For example, if the company’s goal is to
improve sessions-per-user, how much session-per-user improvement
over the past year is attributable to changes launched through experi-
ments? This can be many inch-by-inch wins added together. Bing Ads
shared a powerful plot that shows how their revenue gains between
2013 and 2015 were attributable to incremental improvements from
hundreds of experiments (see Chapter 1).

o What are the experiments with big or surprising impact? While
numbers are great at helping organizations gain insights at-scale, people
relate to concrete examples. We find it helpful to regularly share experi-
ments that are big wins or that have surprising results (see Chapter 1). As
we mentioned in Chapter 4, we can also share a regular report on
experiments that have a big impact on the metrics people care about.

e How many experiments positively or negatively impacted metrics?
At well-optimized domains such as Bing and Google, by some measures
success rate is only 10-20% (Manzi 2012) (Kohavi et al. 2012). Micro-
soft shared that a third of their experiments moved key metrics posi-
tively, a third moved negatively, and a third didn’t have significant
impact (Kohavi, Longbotham et al. 2009). LinkedIn observed similar
statistics. It’s always humbling to realize that without experimentation to
offer an objective true assessment, we could end up shipping both
positive and negative experiments, canceling impact from each other.

o What percentage of features launch through experiments? Which
teams have run the most experiments? What is the growth quarter over
quarter or year over year? Which team is the most effective at moving
your OEC? Which outages are associated with changes that were not
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experimented with? When postmortems on outages must answer such

questions, the culture changes because people realize that experiments

indeed provide a safety net. For bigger companies where there are many
teams involved in running many experiments, it helps to create the
breakdown and encourages better accountability.

2. Experiment best practices. Not necessarily every experimenter follows
the best practices. This is especially common when more and more people
start to experiment. For example, does the experiment go through the
internal beta ramp period that is recommended? Is the experiment powered
enough to detect movement of key metrics? Once you have enough experi-
ments, you can conduct meta-analysis and report summary statistics to
show teams and leadership where they can improve. You can break down
the statistics by teams to further raise accountability. These insights help
you decide whether you should invest in the automation to address the
biggest gaps. For instance, by examining experiment ramp schedules,
LinkedIn realized many experiments spent too much time on early ramp
phases, while others did not even go through the internal beta ramp phase
(see Chapter 14). To address this, LinkedIn built an auto-ramp feature that
helps experimenters follow best ramping practices (Xu, Duan and Huang
2018).

3. Future innovations. For someone new to your company or new to a team,
having a catalog of what worked and what didn’t in the past is highly
valuable. This helps avoid repeating mistakes and inspires effective innov-
ation. Changes that did not work in the past, perhaps because of macro
environment changes may be worth trying again. As you conduct meta-
analysis on many experiments, patterns emerge that can guide you to better
ideas. For example, which type of experiments are most effective for
moving key metrics? Which kind of UI patterns are more likely to engage
users? GoodUlorg summarizes many UI patterns that win repeatedly
(Linowski 2018).

After running many experiments that optimize a particular page, such as
the Search Engine Results Page (SERP), you could predict the impact that
changes to spacing, bolding, line length, thumbnails, and so on has on the
metrics. Therefore, when you add a new element to the SERP, you can
narrow the space of experiments to run. Another example is looking at
experiment heterogeneity across countries (see Chapter 3), you can uncover
hidden insights on how countries react differently for features, which
allows you to build a better user experience customized for these users.

4. Metrics. Metrics are inseparable from experimentation (see Chapter 7).
You can look across your experiments and how various metrics are
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performing to develop a deeper understanding of how to better leverage

them. Here are some example use cases of meta-analysis for metrics:

o Metric sensitivity. While developing metrics, one key criterion is
whether they can be meaningfully measured during experiments.
A metric that no experiment can move statistically significantly is not a
good metric (see Chapter 7). While variance is a key factor influencing
sensitivity, how likely an exogenous change can impact a metric is also a
consideration. For example, daily active users (DAU) is a metric that is
hard to move in short-term experiments. Studying existing metrics by
comparing their performance in past experiments allows you to identify
potential long-term vs. short-term metrics (Azevedo et al. 2019). You
can also construct a corpus of trusted experiments to evaluate new
metrics and compare different definition options (Dmitriev and Wu
2016).

o Related metrics. You can use the movement of metrics in experiments
to identify how they relate to each other. Note that this is different from
metric-to-metric correlation. For example, a user who visits LinkedIn
more often tends to also send a lot more messages. However, sessions
and messages don’t necessarily move together in experiments. One
example of related metrics in experiments is early indicators, which are
metrics that tend to show leading signals for other metrics that take time
to show impact. This is especially useful if those slow-moving metrics
are critical for decision making (see Chapter 7). By studying a lot of
experiments, you can uncover these relationships. See Chen, Liu and Xu
(2019) for how such insights are uncovered and utilized at LinkedIn.

e Probabilistic priors for Bayesian approaches. As the Bayesian view
of evaluating experiments gains popularity, one key concern is whether
you can construct reasonable priors. For more matured products, it is
reasonable to assume metric movement in historical experiments can
offer reasonable prior distribution. See Deng (2015). For product areas
evolving rapidly, it is not clear whether empirical distributions from the
past can reasonably represent the future.

5. Empirical research. The vast amount of experiment data also offers
researchers empirical evidence to evaluate and study their theories through
meta-analysis. For example, Azevedo et al. (2019) studied how a company
can best utilize experimentation to improve innovation productivity. They
proposed an optimal implementation and experimentation strategy based
on thousands of experiments that ran on Microsoft’s experimentation
platform. Experiment randomization can also act as a great instrumental
variable.
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By looking at 700 experiments conducted on the “People You May Know”
algorithm at LinkedIn between 2014 and 2016, Saint-Jacques et al. (2018)
found causal evidence that it is not the strongest connections that help people
land a job, but those that strike a compromise between strength and diversity.
Lee and Shen (2018) looked at how to aggregate impact from many launched
experiments. When a group of experiments is conducted, usually those with
significant successful results are chosen to be launched into the product. They
investigate the statistical selection bias in this process and propose a correction
method based on studying the experiments run on Airbnb’s experimentation
platform.
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9

Ethics in Controlled Experiments

The progress of science is far ahead of man’s ethical behavior
— Charlie Chaplin (1964)

.. .testing where changes in program CODE induce user
DECEPTION. . . [we] call this new approach C/D experimentation to
distinguish it from. . .A/B testing

— Raquel Benbunan-Fich (2017)

Why you care: Understanding the ethics of experiments is critical for every-
one, from leadership to engineers to product managers to data scientists; all
should be informed and mindful of the ethical considerations. Controlled
experiments, whether in technology, anthropology, psychology, sociology, or
medicine, are conducted on actual people. Here are questions and concerns to
consider when determining when to seek expert counsel regarding the ethics of
your experiments.

Background

A broad definition of ethics is the set of rules or morals that govern what we
should or should not do. Ethics, as applied to research, govern the rules of
conduct that ensure the integrity of the results, the values essential for collab-
orative work, public accountability, as well as moral and social values, includ-
ing both public safety and the protection of human subjects (Resnick 2015).
The application of ethics to research can change over time, reflecting the
changing world, culture, and human responses to the unexpected ramifications
of research studies over time. As Charlie Chaplin wrote in the quotation above,
rules and regulations for ethical behavior are developing and lagging the
science.
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This subject is too deep to delve into fully here, so we only give an overview
of the research ethics of controlled experiments. For a deeper study, we
recommend several references (Loukides, Mason and Patil 2018, FAT/ML
2019, ACM 2018, King, Churchill and Tan 2017, Benbunan-Fich 2017, Meyer
2015, 2018), which present key principles, checklists, and practical guides.
While experimenters are often not experts, we should ask ourselves questions,
critically examine our practices, and consider the long-term best interests of
our users and the business. Note that we are writing this in our capacity as
individuals and not as representatives of Google, LinkedIn, or Microsoft.

Two recent examples from technology illustrate the need for these
questions.

1. Facebook and Cornell researchers studied emotional contagion via social
media (Kramer, Guillory and Hancock 2014) to determine whether ran-
domly selected participants exposed to slightly more negative posts posted
more negative content a week later and, conversely, whether other ran-
domly selected participants exposed to slightly more positive posts had
more positive posts themselves a week later.

2. OKCupid ran an experiment where they enrolled pairs of customers whom
the algorithm said were 30%, 60%, and 90% matches, and, for each of these
three groups, told a third of them that they were 30% matches, a third of
them that they were 60% matches, and a third of them that they were 90%
matches (The Guardian 2014, Meyer 2018).

Given these examples, and many others, how do we assess and evaluate which
A/B experiments to run?

We can first turn to the Belmont Report, released in 1979 (The National
Commission for the Protection of Human Subjects of Biomedical and Behav-
ioral Research 1979) that establishes principles for biomedical and behavioral
studies, and to the Common Rule (Office for Human Research Protections
1991) that establishes actionable review criteria based on these principles
(Meyer 2012). These were established after several examples, including the
Tuskegee Syphilis study from the 1930s (CDC 2015) and the Milgram experi-
ment in the 1960s (Milgram 2009) in the medical domain, where the risk of
substantial harm is commonly much higher than that in online experiments.
Based on these guidelines, we now ask questions about whether this clinical
trial is justified (Hemkens, Contopoulos-loannidis and Ioannidis 2016), and
there are situations where conducting randomized controlled trials (RCTs) is
unrealistic or perceived as unethical (Djulbegovic and Hozo 2002).

The Belmont report and the Common Rule provide three key principles in
the context of biomedical and behavioral human subjects research:
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118 9 Ethics in Controlled Experiments

e Respect for persons: Treat them with respect, that is, treat people as
autonomous agents when they are and protect them when they are not. This
translates to a focus on transparency, truthfulness, and voluntariness (choice
and consent).

o Beneficence: Protect people from harm. While the Belmont Report states
that beneficence means minimizing risks and maximizing benefits to par-
ticipants, the Common Rule recognizes the challenge in doing so and
focuses instead on properly assessing the risks and benefits, and balancing
those appropriately when reviewing proposed studies.

o Justice: Ensure that participants are not exploited and that there is a fair
distribution of risks and benefits.

Because of the complexity, the Common Rule lays out provisions that balance
not just the benefits and risks of the study itself but also informs the necessity
of transparency, truthfulness, and voluntariness for participants in the study,
including waivers.

While these questions are a useful framework from a discipline — medicine —
in which substantial harms could occur, there are rarely unambiguous right or
wrong answers, so assessing these principles with regards to specific online
A/B experiments requires judgment, thought, care, and experience. Here are
key areas to consider.

Risk

In your study, what risk does a participant face? Does the risk exceed that of
minimal risk, defined by the Common Rule as “the probability and magnitude
of harm or discomfort anticipated in the research are not greater in and of
themselves than those ordinarily encountered in daily life or during the
performance of routine physical or psychological examinations or tests.” The
harm could be physical, psychological, emotional, social, or economic.

One useful concept is equipoise (Freedman 1987): whether the relevant
expert community is in equipoise — genuine uncertainty — with respect to
two treatments.

In evaluating online controlled experiments, one useful litmus test is
whether you could ship a feature to all users without a controlled experiment,
given the organizational standards. If you could make the change to an
algorithm, or to the look-and-feel of a product without an experiment, surely
you should be able to run an experiment and scientifically evaluate the change
first; perhaps you will uncover unexpected effects. Shipping code is, in fact, an
experiment. It may not be a controlled experiment, but rather an inefficient
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sequential test where one looks at the time series; if key metrics (e.g., revenue,
user feedback) are negative, the feature is rolled back.

The resistance to an online controlled experiment when giving everyone
either Control or Treatment would each be acceptable is sometimes referred to
as the “A/B illusion” (Meyer 2015, Meyer et al. 2019). When you decide to
ship something, you are assuming what effect will result, and that assumption
may or may not hold. If you are willing to ship something to 100% of users,
shipping to 50% with the intent of going to 100% as an experiment should also
be fine. In an example Meyer wrote (Meyer 2015):

...the head of a company is concerned some of her employees are failing to save
enough for retirement. . . She decides that from now on, when she sends out 401(k)
mailings, she will include a statement about how many co-workers within five years
of the employee’s age have signed up for automatic enrollment. She hypothesizes
that the minority of employees who haven’t enrolled may be influenced to do so by
knowledge of the majority’s contrary behavior.

While the head of company is well-intentioned, and studies have shown the
benefits of peer effects, when the controlled experiment was run, it resulted in
oppositional reaction and decrease in savings (Beshears et al. 2011).

Benefits

The other side of risk is to understand the benefits of the study. Oftentimes for
online controlled experiments, benefits are considered in terms of improving
the product, which can be directly for users in the Treatment, for all users who
benefit from the results, or even indirectly in terms of building a sustainable
business so that users can continue benefitting from the service. Improvements
to user productivity might fall in the first two buckets, while improvements to
ads revenue might fall in the last bucket of indirect benefit.

One situation where assessing the benefits may be trickier is when running
experiments that knowingly provide participants a worse experience with a goal
of ultimately improving the experience for all users, often by being able to
quantify tradeoffs. Examples include running experiments that slow user experi-
ence (see Chapter 5), showing more ads to understand long-term effects (see
Chapter 23) or disabling features such as recommendations to assess their value.
These cases violate equipoise in that there is general agreement that the Treat-
ment is not beneficial but has minimal risk to users. The benefit of running these
experiments involves establishing tradeoffs that can be used for more informed
decision making and ultimately help improve the user experience for all.
Importantly, there is no deception of users in these cases. While there is a higher
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120 9 Ethics in Controlled Experiments

risk profile with a greater potential for harm than most online controlled experi-
ments, there is a medical analogy for these types of experiments in drug toxicity
studies: at some point, too much of a drug can be bad, but without running the
studies, we could not know how much or how bad the effects are.

One point to emphasize is the major difference between running experi-
ments to try out new features, new text, new algorithms and infrastructure,
even to establish tradeoffs, versus running deception or power-of-suggestion
experiments that focus on behavioral experimentation and relationships
between people (Benbunan-Fich 2017). Deception experiments carry higher
ethical risk and raise questions about whether participants are respected.

When thinking about respect for participants, the first questions we should
ask are around transparency and expectation. Products set user expectations
about what they provide by both what is in the Ul and what is broadly
communicated. Experiments should follow those expectations.

Alongside several other ways of ensuring transparency, informed consent is
a key ethical concept where participants agree to participate in the study after
they are fully informed about risks and benefits, the process, any alternative
options, and what data is being gathered and how it is handled. Note that here,
we are discussing consent in terms of its general meaning rather than specific
to any legal definition, such as under Europe’s General Data Protection
Regulation (European Commission 2018). Most medical experiments have
informed consent for each participant, and those that do not are typically
minimal risk and meet other conditions, thus qualifying for a waiver of consent
under the Common Rule. In contrast, experiments by online service providers
usually involve a far lower level of risk to the participants, although as online
services start impacting offline experiences, such as with shipping physical
packages, ride sharing, and so on, the risk and consequentiality can increase. In
addition, given the scale of experiments, obtaining informed consent is both
prohibitively expensive and annoying to users. Instead, consider the range of
possibility from experiments where consent is needed to those where the risk
and potential harm to users is very low and consent is not needed. One
alternative towards the middle of that spectrum is presumptive consent, where
a smaller but representative group of people are asked how they would feel
about participating in a study (or class of studies) and, if they agree, assuming
that this sentiment would generalize to all participants (King et al. 2017).

Provide Choices

Another consideration is what choices do participants have? For example, if
you are testing changes to a search engine, participants always have the
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choice to use another search engine. Switching costs for other online services
may be higher in terms of time, money, information sharing, and so on.
These factors should be considered when assessing the choice offered to
participants and the risks and benefits to be balanced. For example, in
medical clinical trials testing new drugs for cancer, the main choice most
participants face is death, making it allowable for the risk to be quite high,
given informed consent.

Data Collection

One prerequisite for running A/B experiments is that data instrumentation is
present for experiment analysis and for making decisions. Often, this data must
be collected to measure and provide a high quality of service to users. As a
result, data collection consent is often included in the Terms of Service for
online services. While other references discuss data collection in more detail
(Loukides et al. 2018), and while it is of course a pre-requisite that any
experiments comply with all applicable privacy and data protection laws,
experimenters or engineers should be able to answer these key questions about
data collection:

e What data is being collected and what do users understand about that
collection, with privacy by design being one useful framework in this area
(Wikipedia contributors, Privacy by Design 2019).

e Do users understand what data is being collected about them?

> How sensitive is the data? Does it include financial or health data? Could
the data be used to discriminate against users in ways that infringe human
rights?

o Can the data be tied to the individual, that is, is it considered personally
identifiable (see Sidebar later in this chapter)?

o For what purpose is the data collected and how can the data be used, and
by whom?

o Is it necessary to collect the data for the purpose? How soon can the data
be aggregated or deleted to protect individual users?

e What could go wrong with the data collection?

o What harm would befall users if that data or some subset be made public?
o Consider harm to their health, psychological or emotional state, social
status, or financials.
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e What are user’s expectations of privacy and confidentiality, and how are
those expectations being guaranteed?

For example, if participants are being observed in a public setting (such as, a

football stadium), there is a lower expectation of privacy. If the study is on

existing public data, then there is also no expectation of further confidential-
ity. If the data is not personally identifiable (see Side bar on page 103), then

privacy and confidentiality are not necessarily a concern (NSF 2018).

Otherwise:

o What level of confidentiality can participants expect?

o What are the internal safeguards for handling that data? Can anyone at the
company access the data, especially if it’s personally identifiable, or is the
data secure with access logged and audited? How are breaches to that
security caught, communicated, and managed?

o What redress will happen (will participants be informed) if these guaran-
tees are not met?

Culture and Processes

Many issues we address are complex and nuanced. It can be tempting to just
rely on experts to make all judgments and set principles. However, to ensure
that the ethical considerations are met, it is important that your corporate
culture, everyone from your leadership down, understands and considers these
questions and implications. Introspection is critical.

Companies — leaders — should implement processes to ensure that this level
of understanding reaches across the board to:

e Establish cultural norms and education processes to keep employees famil-
iar with the issues and ensure that these questions are asked at product and
engineering reviews.

e Create a process that fulfills the purpose of Institutional Review Boards
(IRBs). IRBs review possible human subjects research, assess the risks and
benefits, ensure transparency, provide processes, and more to ensure the
integrity and respect for participants. The IRB approves, requires alterna-
tives, or denies studies. They provide questions for experimenters to con-
sider that ensure thorough review and adequate introspection and establish
just-in-time processes for educational purposes.

e Build tools, infrastructure, and processes so that all data, identified or not, is
stored securely, with access time limited to those who need it to complete
their job. There should be a clear set of principles and policies for what data
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usage is acceptable and what is not acceptable. You should ensure that all
data use is logged and regularly audited for violations.

e Create a clear escalation path for how to handle cases that have more than
minimal risk or data sensitivity issues.

These questions and processes around the ethics of experiments are not an item
to check off, but rather discussions that improve the design of the product and
experiments for end users.

SIDEBAR: User Identifiers

One frequently asked question is what is the difference between identified,
pseudonymous, and anonymous data? While the precise definitions may shift
based on context or applicable laws and are still being discussed, an overview
of the high-level concepts associated with these concepts are:

o Identified data is stored and collected with personally identifiable infor-
mation (PII). This can be names, IDs (such as a social security number or
driver’s license), phone numbers, and so on. A common standard is HIPAA
(Health and Human Services 2018b, Health and Human Services 2018c),
which has 18 identifiers (HIPAA Journal 2018, Health and Human Services
2018a) that are considered personally identifiable. Device ID (such as, a
smartphone’s device ID) is also considered personally identifiable in many
instances. In Europe, GDPR (General Data Protection Regulation) holds an
even higher standard, and considers any data to be personal data if it can be
linked to an individual (European Commission 2018).

e Anonymous data is stored and collected without any personally identifiable
information. This data is considered pseudonymous if it is stored with a
randomly generated ID, such as a cookie, that is assigned to some event, such
as the first time a user opens an app or visits website and does not have an ID
stored. However, simply stating that data is pseudonymous or anonymous
does not mean that re-identification cannot happen (McCullagh 2006). Why?
We must distinguish between anonymous data and anonymized data. Anon-
ymized data is identified or anonymous data that has been looked at and
guaranteed in some way that the re-identification risk is low-to-nonexistent,
that is, given the data it almost impossible for someone to determine which
individual this data refers to. Often, this guarantee is done via the Safe Harbor
method or other methods such as k-anonymity (Samarati and Sweeney 1998)
or differential privacy (Dwork and Roth 2014). Note that many of these
methods do not guarantee that anonymous data will not have re-identification

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:53, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.012


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.012
https://www.cambridge.org/core

124 9 Ethics in Controlled Experiments

risk, but rather try to quantify the risk and the constraints, such as limiting
queries or adding noise with additional queries (Abadi et al. 2016).

In EU-based privacy literature, the current high bar globally with respect to
privacy, they no longer discuss anonymous data as a separate category, but
instead simply talk about personal data and anonymized data.

So, for the data being gathered, collected, stored, and used in the experi-
ment, the questions are:

o How sensitive is the data?
o What is the re-identification risk of individuals from the data?

As the sensitivity and risk increases, you must increase the level of data
protection, confidentiality, access control, security, monitoring and auditing,
and so on.
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PART III

Complementary and Alternative
Techniques to Controlled Experiments

Part III introduces methods that complement online controlled experiments.
This content is especially useful for data scientists and others who are likely to
use the techniques, and for leaders to understand how to allocate resources to
areas and to establish experiments to make data-informed decisions.

We start with Complementary Techniques, which is an overview of several
techniques — user experience research studies, surveys, focus groups, and
human evaluation — used in conjunction with online controlled experiments.
Use these techniques as part of generating and evaluating ideas in an “ideas
funnel” before investing in an online controlled experiment, and for generating
and validating metrics for use either for the organization broadly, or as
surrogate metrics in online controlled experiments.

We then focus on Observational Causal Studies. While online controlled
experiments are considered the gold standard for establishing causal impact for
a change to your product or service, they are not always possible. In the
chapter, we discuss several common scenarios in which online controlled
experiments may not be possible and give a brief overview of common
methods for such situations.
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10

Complementary Techniques

If all you have is a hammer, everything looks like a nail
— Abraham Maslow

Why you care: When running experiments, you also need to generate ideas to
test, create, and validate metrics, and establish evidence to support broader
conclusions. For these needs, there are techniques such as user experience
research, focus groups, surveys, human evaluation, and observational studies
that are useful to complement and augment a healthy A/B testing culture.

The Space of Complementary Techniques

To have successful A/B experiments, we not only need the care and rigor in
analysis and in creating the experimentation platform and tools, but we also
need:

o Ideas for experiments, that is, an ideas funnel (Kohavi et al. 2013).

e Validated metrics to measure the effects we care about.

e Evidence supporting or refuting hypotheses, when running a controlled
experiment is either not possible or insufficient.

e Optionally, metrics that are complementary to the metrics computed from
controlled experiments.

For an idea funnel, you want to use every method at your disposal to generate
ideas, including methods like observing users in a user experience study. For
ideas that are easy to implement, we recommend testing them directly by
running a controlled experiment; however, for ideas that are expensive to
implement, you can use one of these complementary techniques for early
evaluation and idea pruning to reduce implementation cost.
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Figure 10.1 Number of users versus depth of information per user

As another example for using complementary techniques, what if you want
a reliable proxy metric for user satisfaction, a concept that is quite difficult to
measure. You can run a survey and gather self-reported user satisfaction data,
and then analyze instrumented logs data to see what large-scale observational
metrics correlate with the survey results. You can extend this further by
running controlled experiments to validate the proposed proxy metrics.

The methods we discuss in this chapter vary along two axes: scale
(i.e., number of users) vs. depth of information per user, as summarized in
Figure 10.1, and as we discuss each in turn, we will see the tradeoff in terms of
the generalizability that comes from the scale relative to the details we can get
from lower-scale methods.

Logs-based Analysis

One pre-requisite for running trustworthy A/B experiments is having proper
instrumentation of user views, actions, and interactions to compute metrics for
evaluating controlled experiments. The same is true for logs-based analyses,
also called retrospective analyses. These help with:
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Logs-based Analysis 129

e Building intuition: You can answer questions, such as the following, to

define metrics and build intuition:
° What is the distribution of sessions-per-user or click-through rate?
° What is the difference by key segments, such as by country or platform

(see Chapter 3)?

o How do these distributions shift over time?
o How are users growing over time?

Building this intuition helps you understand your product and system
baseline, what the variance is, what is happening organically independent of
experimentation, what size change might be practically significant,
and more.

e Characterizing potential metrics: Building intuition is the precursor for
characterizing potential metrics. Characterization helps you understand the
variance and distributions, how new metrics correlate with existing metrics.
Log-based analyses establish understanding of how a potential metric might
perform on past experiments. For example, is it useful for making deci-
sions? Does it provide new/better information than existing metrics?

e Generating ideas for A/B experiments based on exploring the under-
lying data: You can examine the conversion rate at each step of the purchase
funnel to identify large drop offs (McClure 2007). Analyzing sessionized
data can uncover that a particular action sequence took longer than expected.
This discovery path leads to ideas of how to make your product better,
whether you’re introducing new features or UI design changes.

® You can explore whether ideas generated using these complementary tech-
niques happen at-scale and are worth investing time implementing and
evaluating using an A/B experiment. For example, before investing in
making an e-mail attachment easier to use, get an upper-bound sizing of
the impact by analyzing the number of attachments sent.

e Natural experiments: These occur occasionally, either due to exogenous
circumstances (e.g., an external company changing a default) or bugs (e.g.,
a bug that logs all users out). In those cases, run an observational analysis
(see Chapter 11) to measure the effect.

e Observational causal studies (see Chapter 11): You can run these studies
when experiments are not possible, for example, you can use quasi-
experimental designs. When you use quasi-experimental designs in com-
bination with experiments, they can lead to an improved inference of a more
general result.

Logs-based analyses can serve many purposes complementary to A/B
experiments. One limitation is that these analyses can only infer what will
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happen in the future based on what happened in the past. For example, you
may decide not to further invest in the e-mail attachment feature because
current usage is small; however, the current low usage might have been
caused by the fact that it is difficult to use, which logs-based analysis
may not reveal. Combining logs-based analysis with user and market
research, as we discuss later in this chapter, gives a more comprehensive
picture.

Human Evaluation

Human evaluation is where a company pays a human judge, also called a rater,
to complete some task. The results are then used in subsequent analysis. This is
a common evaluation method in search and recommendation systems. Simple
ratings can be questions such as, “Do you prefer side A or side B,” or “Is this
image pornographic?” and can get progressively more complicated, such as,
“Please label this image,” or “How relevant is this result for this query.” The
more complicated rating tasks may have detailed instructions to ensure more
calibrated ratings. Typically, multiple raters are assigned the same task, as
raters may disagree; you can use various voting or other disagreement reso-
lution mechanisms to obtain high-quality aggregate labeling. For example, the
quality of data from pay-systems, such as Mechanical Turk (Mechanical Turk
2019), varies depending on the incentives and payment amount, increasing the
importance of quality-control and disagreement resolution (Buhrmester,
Kwang and Gosling 2011).

One limitation of human evaluation is that raters are generally not your end
users. Raters are doing tasks assigned to them — often in bulk, whereas your
product is something your end users come by organically to their lives. In
addition, raters can miss the local context of real users. For example, the search
query “5/3” to many raters is an arithmetic query and will expect the result
1.667, yet users living near the “Fifth Third Bank,” whose logo is “5/3,” are
looking for the bank information. This is an example of how hard it is to
evaluate personalized recommendation algorithms. However, this limitation
can also be an advantage, as raters can be trained to detect spam or other
harmful experiences that users may not be able to perceive or detect. It is best
to think that your human evaluation provides calibrated labeled data to com-
plement data gathered from real users.

You can use metrics based on human evaluation as additional metrics for
evaluating A/B experiments (Huffman 2008). Again, let’s use search ranking
changes. You can ask raters to rate results from either Control or Treatment for
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a given query and aggregate the ratings to see which variant is preferred; or use
a side-by-side experiment, where Control and Treatment search results are
shown side by side, and raters asked which side is “better.” For example, Bing
and Google’s scaled-out human evaluation programs are fast enough for use
alongside the online controlled experiment results to determine whether to
launch the change.

Human evaluation results are also useful for debugging: you can exam-
ine the results in detail to understand where changes perform well and
poorly. In our search query example, results rated a poor match for a query
can be examined to help determine why the algorithm returned the result.
You can also pair human evaluation with log-based analysis to understand
what observed user actions correlate with highly relevant results for
a query.

User Experience Research (UER)

While user experience research (UER) uses a variety of methods, we focus
here on a subset of field and lab studies that typically go deep with a few users,
often by observing them doing tasks of interest and answering questions in
either a lab setting or in situ (Alvarez 2017). This type of research is in-depth
and intensive typically with at most tens of users, and is useful for generating
ideas, spotting problems, and gaining insights from direct observation and
timely questions. For example, if your website is trying to sell something, you
can observe users trying to complete a purchase, and develop ideas for metrics
based on observing where they struggle: Do we observe the purchase taking a
long time? Are users struggling and going down a rabbit hole, such as looking
for coupon codes?
These type of field and lab studies can include:

e Special equipment to gather data, such as eye-tracking that you cannot
gather from your instrumentation

e Diary studies, where users self-document their behavior longitudinally, are
useful for gathering data analogous to online instrumentation but augmented
with data you cannot gather via instrumentation, such as user intent or
offline activities.

These techniques can be useful for generating metric ideas based on correlat-
ing “true” user intent with what we observe via instrumentation. You must
validate these ideas using methods that scale to more users, such as observa-
tional analyses and controlled experiments.
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Focus Groups

Focus groups are guided group discussions with recruited users or potential
users. You can guide discussion to any range of topics, ranging from open-
ended questions about user attitudes, “What is commonly done or discussed
amongst their peers,” to more specific questions, maybe using screenshots or a
demo walk-through to elicit feedback.

Focus groups are more scalable than a UER study and can handle a similar
level of ambiguous, open-ended questions that can guide product development
and hypotheses. However, given the group nature and discussion format, less
ground can be covered than in a UER study, and can fall prey to group-think
and convergence on fewer opinions. What customers say in a focus group
setting or a survey may not match their true preferences. A well-known
example of this phenomenon occurred when Philips Electronics ran a focus
group to gain insight into teenagers’ preferences for boom box features. The
focus group attendees expressed a strong preference for yellow boom boxes
during the focus group, characterizing black boom boxes as “conservative.”
Yet when the attendees exited the room and were given the chance to take
home a boom box as a reward for their participation, most chose black (Cross
and Dixit 2005).

Focus groups can be useful for getting feedback on ill-formed hypotheses in
the early stages of designing changes that become future experiments, or for
trying to understand underlying emotional reactions, often for branding or
marketing changes. Again, the goal is to gather information that cannot be
measured via instrumentation and to get feedback on not-yet-fully-formed
changes to help further the design process.

Surveys

To run a survey, you recruit a population to answer a series of questions
(Marsden and Wright 2010). The number of questions can vary, as can the type
of questions. You can have multiple-choice answers, or open-ended questions
where users give a free-form response. These can be done in-person, over the
phone, or online directly on your app or site or via other methods of reaching
and targeting users (such as Google Surveys (Google 2018)). You can also run
surveys from within products, potentially pairing them with controlled experi-
ments. For example, the Windows operating system prompts users with one or
two short questions about the operating system and about other Microsoft
products; Google has a method to ask a quick question tied to a user’s
in-product experience and satisfaction (Mueller and Sedley 2014).
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While surveys may seem simple, they are actually quite challenging to
design and analyze (Marsden and Wright 2010, Groves et al. 2009):

e Questions must be carefully worded, as they may be misinterpreted or
unintentionally prime the respondents to give certain answers, or uncali-
brated answers. The order of questions may change how respondents answer.
And if you want to get data over time, you need to be careful about changes to
the survey, as the changes may invalidate comparisons over time.

o Answers are self-reported: Users may not give full or truthful answers, even
in anonymous surveys.

e The population can easily be biased and may not be representative of the
true user population. This is exacerbated by “response bias,” that is, which
users respond may be biased (e.g., only people who are unhappy respond).
Because of this bias, relative survey results (e.g., time period over time
period) may be more useful than absolute results.

These pitfalls suggest that surveys are almost never directly comparable to any
results observed from instrumentation. You can use surveys to reach larger
numbers of users than UERSs or focus groups, but they are primarily useful for
getting answers to questions you cannot observe from your instrumented data,
such as what happens when a user is offline or a user’s opinion or trust and
satisfaction levels. Questions might include what other information a user used
when making a purchase decision, including offline actions such as talking to a
friend, or asking about a user’s satisfaction level three months post-purchase.

Surveys are also useful for observing trends over time on less-directly-
measurable issues, such as trust or reputation, and are sometimes used to
correlate with trends on highly aggregate business metrics, such as overall usage
or growth. This correlation can then drive investment in a broad area such as
how to improve user trust, but not necessarily generate specific ideas. You can
use targeted UER studies for idea generation once you define the broad area.

Depending on the consent of survey participants, you may be able to pair
survey results with observational analysis to see which survey responses
correlate with observed user behavior, but the bias of the survey respondents
will impact the believability and generalizability of the results.

External Data

External data is data relevant to you and what you are looking at that a party
external to your company has collected data and analyzed. There are several
sources of external data:
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o Companies providing per-site granular data (such as, the number of users to
a website or detailed information about user online habits) based on data
gathered from recruiting a large panel of users who agreed to have all online
behavior tracked. One question has been around the representativeness of
these users — while they are sampled from clear demographic buckets, there
may be other differences in the users who agree to be tracked at this level of
detail.

o Companies providing per-user granular data, such as user segments, that can
be potentially joined with logs-based data.

o Companies running surveys and questionnaires either to publish themselves
or who you can hire to run custom surveys. These companies use a variety
of methods to answer questions you might be interested in, such as how
many devices users have or their perspective on how trustworthy a brand is.

e Published academic papers. Researchers often publish studies of something
of interest. There are a lot of papers out there, for example, papers compar-
ing eye tracking — what the user looked at in a lab, with how they clicked on
a search engine (Joachims et al. 2005) give you a good sense of how
representative your click data is.

e Companies and websites providing lessons learned, often crowd-sourcing
results to validate the lessons. This can be UI design patterns (Linowski
2018b)

External data can help validate simple business metrics if your site or industry
appears in one of these lists. For example, if you want to look at total visitors to
your site, you can compare your number computed from an internal observa-
tional analysis with the numbers provided by comScore or Hitwise, or you
could compare the fraction of shopping traffic in each “vertical” category to
what you see on your site. Rarely will these numbers exactly match. A better
way to do validation is to look at a time series of both internal and external data
to see whether the time series aligns in terms of the trend or seasonal variabil-
ity. You can also provide supporting evidence for your business metrics, either
directly measurable quantities or to get ideas for which measurable metrics
make good proxies for other harder-to-measure quantities.

Publicly available academic papers, such as those pertaining to User Experi-
ence, often establish a general equivalence between different types of metrics.
One example compares user-reported satisfaction with a search task to the
measured task duration (Russell and Grimes 2007), that gives a good general
correlation for satisfaction with duration, though with caveats. This study
helped validate a metric, duration, that can be computed at scale and correlates
with a metric that cannot be computed at scale, user-reported satisfaction.
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External data can also add to the hierarchy of evidence. For example,
companies could use the published work from Microsoft, Google, and others
to establish that latency and performance is important without necessarily
needing to run their own online controlled experiments (see Chapter 5).
Companies would need to run their own experiments to understand specific
tradeoffs for their product, but the general direction and investment could be
based on external data for a smaller company without those resources.

External data can also provide competitive studies about how your company
compares with your competitors, which can help provide benchmarking on
your internal business metrics and give you a sense of what is attainable.

One caveat: because you do not control the sampling or know the exact
methods used to do the analysis, the absolute numbers may not always be
useful, but trends, correlations, and metric generation and validation are all
good use cases.

Putting It All Together

There are many ways to gather data about users, so the question is how to
choose which one(s) to use. In large part, this depends on your goal. Do you
want to figure out how to measure a particular user experience? Do you want to
validate metrics? If you have no idea about what metrics to gather in the first
place, more detailed, qualitative, brainstorming type of interactions, such as
UER studies or focus groups work well. If you have no way of getting the data,
because the interactions aren’t on your site, a survey may work well. For
validating metrics, external data and observational analyses work well since
the data is usually collected over a large enough population that there are fewer
sampling biases or other measurement issues.

All these techniques have different tradeoffs. You should consider how many
people you are able to collect data from. This affects the generalizability of the
results; in other words, whether you can establish external validity. The number
of users is often a tradeoff against what type of detail you can get. For example,
logs usually have user actions at-scale but not “why’” a user acts a particular way
that you might get in a UER field study. Where you are in a product cycle may
also be a consideration. Early on, when you have too many ideas to test, more
qualitative methods such as focus groups and user experience research may
make more sense. And as you move towards having quantitative data, then
observational studies and experiments make more sense.

Finally, remember that using multiple methods to triangulate towards a more
accurate measurement — establishing a hierarchy of evidence — can lead to
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more robust results (Grimes, Tang and Russell 2007). Since no method can
fully replicate the results from another method, use multiple methods to
establish bounds for the answer. For example, to see whether users are happy
with your personalized product recommendations, you must define signs of
“happiness.” To do that, you might observe users in an UER study, see
whether they use the personalized recommendations, and ask them questions
about whether they found the recommendations useful. Based on that feed-
back, you can look at the observational data for those users and see what
behavioral signals you might see, such as a longer time reading the screen or
certain click orders. You can then run a large observational analysis to validate
the metric ideas generated from the small-scale UER study, see the interplay
with the overall business metrics, and then potentially bolster that with an on-
screen survey to reach a larger set of users with simple questions about
whether they liked the recommendations. Accompanying this with learning
experiments that change the recommendations, will allow you to better under-
stand how user happiness metrics relate to the overall business metrics and
improve your OEC.
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11

Observational Causal Studies

Shallow men believe in luck. Strong men believe in cause and effect
— Ralph Waldo Emerson

Why you care: Randomized controlled experiments are the gold standard for
establishing causality, but sometimes running such an experiment is not
possible. Given that organizations are collecting massive amounts of data,
there are observational causal studies that can be used to assess causality,
although with lower levels of trust. Understanding the space of possible
designs and common pitfalls can be useful if an online controlled experiment
is not possible.

When Controlled Experiments Are Not Possible

What is the impact on product engagement if a user switches their phone from
an iPhone to a Samsung? How many users come back if we forcibly sign them
out? What happens to revenue if coupon codes are introduced as part of the
business model? For all these questions, the goal is to measure the causal
impact for a change, which requires comparing the outcome of a treated
population to the outcome for an untreated population. The “basic identity of
causal inference” (Varian 2016) is:

Outcome for treated — Outcome for untreated

= [Outcome for treated — Outcome for treated if not treated]
+[Outcome for treated if not treated — Outcome for untreated]

= Impact of Treatment on treated + Selection bias

and shows that the comparison of the actual impact (what happens to the
treated population) compared to the counterfactual (what would have

137
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happened if they had not been treated) is the critical concept for establishing
causality (Angrist and Pischke 2009, Neyman 1923, Rubin 1974, Varian 2016,
Shadish, Cook and Campbell 2001).

Controlled experiments are the gold standard for assessing causality
because, with random assignment of units to variants, the first term is the
observed difference between Treatment and Control and the second term has
an expected value of zero.

However, sometimes you cannot run a properly controlled experiment.
These situations include:

e When the causal action to be tested is not under the control of the organiza-
tion. For example, you may want to understand how a user’s behavior
changes when they change their phone from an iPhone to a Samsung
Galaxy phone. Even if you are Samsung with some levers to incent users
to switch that can be randomized, generally you are not in control of users’
choices here and paying people to switch biases the results.

o When there are too few units. For example, in a Merger and Acquisition
(M&A) scenario, there is a single event that happens (or not) and estimating
the counter-factual is extremely hard.

o When establishing a Control may incur too large an opportunity cost since
they do not receive the Treatment (Varian 2016). For example, randomized
experiments can be costly for rare events, such as establishing the impact of
running ads during the Superbowl (Stephens-Davidowitz, Varian and Smith
2017), or when the desired OEC takes too long to measure, such as returning
to a website to purchase a new car five years after the current car purchase.

o When the change is expensive relative to the perceived value. Some experi-
ments are run to try to better understand relationships. For example, how many
users will churn if you forcibly sign out all users after some time period? Or,
what if you don’t display ads on a search engine such as Bing or Google?

® When the desired unit of randomization cannot be properly randomized.
When assessing the value of TV ads, it is practically impossible to random-
ize by viewers. The alternative of using Designated Market Areas (DMAs)
(Wikipedia contributors, Multiple Comparisons problem 2019), results in
far fewer units (e.g., about 210 in the US) and hence low statistical power,
even when using techniques such as pairing.

o When what is being tested is unethical or illegal, such as withholding
medical treatments that are believed to be beneficial.

In the above situations, often the best approach is to estimate the effects using
multiple methods that are lower in the hierarchy of evidence, that is, answering
the question using multiple methods, including small-scale user experience
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studies, surveys, and observational studies. See Chapter 10 for an introduction
to several other techniques.

Our focus in this chapter is on estimating the causal effect from observa-
tional studies, which we will call observational causal studies. Some books,
such as Shadish et al. (2001), use the term observational (causal) studies to
refer to studies where there is no unit manipulation, and the term quasi-
experimental designs to studies where units are assigned to variants, but the
assignment is not random. For additional information, please see Varian
(2016) and Angrist and Pischke (2009, 2014). Note that we differentiate an
observational causal study from the more general observational, or retrospect-
ive, data analyses. While both are run on historical log data, the goal in an
observational causal study is to try to get as close to a causal result as possible,
while retrospective data analyses, as discussed in Chapter 10, have different
goals, ranging from summarizing distributions, seeing how common certain
behavioral patterns are, analyzing possible metrics, and looking for interesting
patterns that may suggest hypotheses to be tested in controlled experiments.

Designs for Observational Causal Studies

In observational causal studies, the challenges are:

e How to construct Control and Treatment groups for comparison.
e How to model the impact given those Control and Treatment groups.

Interrupted Time Series

Interrupted Time Series (ITS) is a quasi-experimental design, where you can
control the change within your system, but you cannot randomize the Treat-
ment to have a proper Control and Treatment. Instead, you use the same
population for Control and Treatment, and you vary what the population
experiences over time.

Specifically, it uses multiple measurements over time, before an interven-
tion, to create a model that can provide an estimate for the metric of interest
after the intervention — a counterfactual. After the intervention, multiple
measurements are taken, and the Treatment effect is estimated as the average
difference between the actual values for the metric of interest and those
predicted by the model (Charles and Melvin 2004, 130). One extension to
the simple ITS is to introduce a Treatment and then reverse it, optionally
repeating this procedure multiple times. For example, the effect of police
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helicopter surveillance on home burglaries was estimated using multiple
Treatment interventions because over several months, surveillance was imple-
mented and withdrawn several times. Each time that helicopter surveillance
was implemented, the number of burglaries decreased; each time surveillance
was removed, the number of burglaries increased (Charles and Melvin 2004).
In an online setting, a similar example is to understand the impact of online
advertising on search-related site visits. Note that sophisticated modeling may
be necessary to infer the impact, with an online example of ITS being Bayesian
Structural Time Series analysis (Charles and Melvin 2004).

One common issue with observational causal studies is ensuring that you are
not attributing an effect to a change when in fact there is some confounding
effect. The most common confounds for ITS are time-based effects as the
comparisons are made across different points of time. Seasonality is the
obvious example, but other underlying system changes can also confound.
Changing back and forth multiple times will help reduce the likelihood of that.
The other concern when using ITS is on the user experience: Will the user
notice their experience flipping back and forth? If so, then that lack of
consistency may irritate or frustrate the user in a way that the effect may not
be due to the change but rather the inconsistency.
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Figure 11.1 Interrupted Time Series using Bayesian Structural Time Series
(Charles and Melvin 2004). (a) shows the model fit in the pre-intervention period
and the actual observed metric in the solid line, with the dashed line the predicted
counterfactual. The x-axis is days with shaded vertical bars indicating weekends.
(b) shows the delta between the actual and the prediction; if the model is good,
then it is an estimate of the Treatment effect. Weekends are shaded in grey
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Interleaved Experiments

Interleaved experiment design is a common design used to evaluate ranking
algorithm changes, such as in search engines or search at a website (Chapelle
et al. 2012, Radlinski and Craswell 2013). In an interleaved experiment, you
have two ranking algorithms, X and Y. Algorithm X would show results x;,
X2, ...X, in that order, and algorithm Y would show y;, y,, ...y, . An
interleaved experiment would intersperse results mixed together, e.g. x;, yi,
X2, Y2, - .-Xn, ¥, With duplicate results removed. One way to evaluate the
algorithms would be to compare the click-through rate on results from the
two algorithms. While this design is a powerful experiment design, it is limited
in its applicability because the results must be homogenous. If, as is common,
the first result takes up more space, or impacts the other areas of the page, then
complexities arise.

Regression Discontinuity Design
Regression Discontinuity Design (RDD) is a methodology that can be used
whenever there is a clear threshold that identifies the Treatment population.
Based on that threshold, we can reduce selection bias by identifying the
population that is just below the threshold as Control and compared to the
population that is just above the threshold as Treatment.

For example, when a scholarship is given, the near-winners are easily identified
(Thistlewaite and Campbell 1960). If a scholarship is given for an 80% grade, then
the Treatment group that received grades just above 80% is assumed to be similar
to the Control group that received grades just below 80%. The assumption is
violated when participants can impact their Treatment; for example, if the Treat-
ment is applied to a passing grade, but students are able to convince their teachers
to “mercy pass” them (McCrary 2008). An example using RDD is in assessing the
impact of drinking on deaths: Americans over 21 can drink legally, so we can look
at deaths by birthday, shown in Figure 11.2. The “Mortality risk shoots up on and
immediately following a twenty-first birthday . . . about 100 deaths to a baseline
level of about 150 per day. The age-21 spike doesn’t seem to be a generic party-
hardy birthday effect. If this spike reflects birthday partying alone, we should
expect to see deaths shoot up after the twentieth and twenty-second birthdays as
well, but that doesn’t happen” (Angrist and Pischke 2014).

As in the above example, one key issue is again confounding factors. In
RDD, the threshold discontinuity may be contaminated by other factors that
share the same threshold. For example, a study of the impact of alcohol that
chooses the legal age of 21 as the threshold may be contaminated by the fact
that this is also the threshold for legal gambling.
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Figure 11.2 Deaths vs. Days from birthday for 20th, 21st, and 22nd birthday
(Angrist and Pischke 2014)

RDD most commonly applies when there is an algorithm that generates a
score, and something happens based on a threshold of that score. Note that
when this happens in software, while one option is to use RDD, this is also a
scenario that also easily lends itself to randomized controlled experiments, or
some hybrid of the two (Owen and Varian 2018).

Instrumented Variables (IV) and Natural Experiments

Instrumental Variables (IV) is a technique that tries to approximate random
assignment. Specifically, the goal is to identify an Instrument that allows us to
approximate random assignment (this happens organically in a natural experi-
ment) (Angrist and Pischke 2014, Pearl 2009).

For example, to analyze difference in earnings between veterans and non-
veterans, the Vietnam war draft lottery resembles random assignment of
individuals into the military; charter school seats are allocated by lottery and
can thus be a good IV for some studies. In both examples, the lottery does not
guarantee attendance but has a large impact on attendance. A two-stage least-
squares regression model is then commonly used to estimate the effect.

Sometimes, natural experiments that are “as good as random” can occur. In
medicine, monozygotic twins allow running twin studies as natural experi-
ments (Harden et al. 2008, McGue 2014). Online, when studying social or peer
networks, running controlled experiments on members can be challenging as
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the effect may not be constrained to the Treatment population due to member-
to-member communications. However, notification queues and the message
delivery order are types of natural experiments that can be leveraged to
understand the impact of notifications on engagement, for example Tutterow
and Saint-Jacques (2019).

Propensity Score Matching

Another class of approaches here is to construct comparable Control and
Treatment populations, often by segmenting the users by common confounds,
in something akin to stratified sampling. The idea is to ensure that the
comparison between Control and Treatment population is not due to popula-
tion mix changes. For example, if we are examining an exogenous change of
the impact of users changing from Windows to iOS, we want to ensure that we
are not measuring a demographic difference in the population.

We can take this approach further by moving to propensity score match-
ing (PSM) that, instead of matching units on covariates, matches on a single
number: a constructed propensity score (Rosenbaum and Rubin 1983,
Imbens and Rubin 2015). This approach has been used in the online space,
for example for evaluating the impact of online ad campaigns (Chan et al.
2010). The key concern about PSM is that only observed covariates are
accounted for; unaccounted factors may result in hidden biases. Judea Pearl
(2009, 352) wrote “Rosenbaum and Rubin ... were very clear in warning
practitioners that propensity scores work only under ‘strong ignorability’
conditions. However, what they failed to realize is that it is not enough to
warn people against dangers they cannot recognize.” King and Nielsen
(2018) claim that PSM “often accomplishes the opposite of its intended
goal—thus increasing imbalance, inefficiency, model dependence,
and bias.”

For all of these methods, the key concern is confounding factors.

Difference in Differences

Many of the methods above focus on how to identify a Control group that is as
similar to a Treatment group as possible. Given that identification, one method
to measure the effect of the Treatment is difference in differences (DD or DID)
that, assuming common trends, assigns the difference in difference to the
Treatment. In particular, the groups “may differ in the absence of Treatment
yet move in parallel” (Angrist and Pischke 2014).
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Figure 11.3 Difference in differences

Geographically based experiments commonly use this technique. You want
to understand the impact of TV advertising on driving user acquisition,
engagement, and retention. You run TV ads in one DMA and compare it to
another DMA. For example, as shown in Figure 11.3, a change is made at time
T, to the Treatment group. Measurements are taken for both the Treatment and
Control just before T}, and at a later point 7. The difference in the metrics of
interest, such as the OEC, between the two periods in the Control group are
assumed to capture the external factors (e.g., seasonality, economic strength,
inflation) and thus present the counterfactual of what would have happened to
the Treatment group. The Treatment effect is estimated as the difference in a
metric of interest minus the difference in Control for that metric over the same
period.

Note that this method can also be applied even when you do not make the
change, and the change happens exogenously. For example, when a change
was made to the minimum wage in New Jersey, researchers who wanted to
study its impact on employment levels in fast-food restaurants, compared it
to eastern Pennsylvania, which matched on many characteristics (Card and
Krueger 1994).

Pitfalls

Although observational causal studies are sometimes your best option, they
have many pitfalls that you should be aware of (see also Newcomer et al.
(2015) for a more exhaustive list). As mentioned above, the main pitfall,
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Life

Expectancy

Figure 11.4 Instead of Palm Size predicting Life Expectancy, Gender is the
common cause that predicts both

regardless of method, in conducting observational causal studies is unantici-
pated confounds that can impact both the measured effect, as well as the
attribution of causality to the change of interest. Because of these confounds,
observational causal studies require a great deal of care to yield trustworthy
results, with many examples of refuted observational causal studies (see Side-
bar: Refuted Observational Causal Studies later in this chapter and Chapter 17
for a few).

One common type of confound is an unrecognized common cause. For
example, in humans, palm size has a strong correlation with life expectancy:
on average the smaller your palm, the longer you will live. However, the
common cause of smaller palms and longer life expectancy is gender: women
have smaller palms and live longer on average (about six years in the US).

As another example, for many products, including Microsoft Office 365,
users that see more errors typically churn less! But do not try to show more
errors expecting to reduce churn, as this correlation is due to a common cause:
usage. Your heaviest users see more errors and churn at lower rates. It is not
uncommon for feature owners to discover that users of their new feature churn
at a lower rate, which implies that it is their feature that is reducing churn. Is it
really the feature or (more likely) simply that heavy users churn less and are
more likely to use more features? In these cases, to evaluate whether the new
feature indeed reduces churn, run a controlled experiment (and analyze new
and heavy users separately).

Another pitfall to be aware of are spurious or deceptive correlations.
Deceptive correlations can be caused by strong outliers, for example as in
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Figure 11.5 Deceptive correlation of athletic performance and amount of energy
drink consumed. Correlation does not imply causation!

Figure 11.5, where a marketing company can claim that their energy drink is
highly correlated with athletic performance and imply a causal relationship:
drink our energy product and your athletic performance will improve (Orlin
2016).

Spurious correlations can almost always be found (Vigen 2018). When we test
many hypotheses and when we do not have the intuition to reject a causal claim as
we have in the above example, we may believe it. For example, if someone told
you that they found a factor that had a strong correlation (r=0.86) with people
killed by venomous spiders, you might be tempted to act on this information. Yet
when you realize that the deaths are correlated with word length in the National
Spelling Bee test, as shown in Figure 11.6, you quickly reject the request to
shorten the word length in the National Spelling Bee as irrational.

Even when care is taken, there is never a guarantee that there is not some
other factor not included in the observational causal study that may impact the
results. Quasi-experimental methods, which attempt to derive a counterfactual
to compare to and therefore establish causality, simply require making many
assumptions, any of which can be wrong, and some assumptions are implicit.
Incorrect assumptions can lead to a lack of internal validity but depending on
the assumptions and how limiting they are, they can also impact the external
validity of the study. While building intuition, as discussed in Chapter 1, can
help improve the quality of assumptions, intuition will not mitigate all possible
problems. Thus, the scientific gold standard for establishing causality is still
the controlled experiment.
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Figure 11.6 Spurious correlation of people killed by venomous spiders and word
length in Scripps National Spelling Bee

SIDEBAR: Refuted Observational Causal Studies

Claiming causality from observational data (uncontrolled) requires multiple
assumptions that are impossible to test and are easily violated. While many
observational causal studies are later confirmed by randomized controlled
experiments (Concato, Shah and Horwitz 2000), others are refuted. Ioannidis
(2005) evaluated claims coming from highly cited studies; of six observational
causal studies included in his study, five failed to replicate. Stanley Young and
Alan Karr (2019) compared published results from medical hypotheses shown
to be significant using observational causal studies (i.e., uncontrolled) with
randomized clinical trials considered more reliable. Of 52 claims in 12 papers,
none replicated in the randomized controlled trials. And in 5 of the 52 cases,
the direction was statistically significant in the opposite direction of the
observational causal study. Their conclusion: “Any claim coming from an
observational study is most likely to be wrong.”

One example from the online space is on how to measure the effectiveness
of online advertising, in other words, whether online ads led to either increased
brand activity or even user engagement. Observational causal studies are often
required to measure the effect, since the intervention (the ad) and the effect
(user sign-up or engagement) are typically on different sites and therefore
different spheres of control. Lewis, Rao and Reiley (2011) compared the
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effectiveness of online advertising as estimated by observational causal studies
relative to the “gold standard” controlled experiments, finding that observa-
tional causal studies vastly overestimated the effect. Specifically, they ran three
experiments.

First, advertisements (display ads) were shown to users, and the question
was: What is the increase (lift) in the number of users who search using
keywords related to the brand shown in the ad. Using several observational
causal studies of 50 million users, including three regression analyses with
Control variables, the estimated lift ranged from 871% to 1198%. This esti-
mated lift is orders of magnitude higher from the lift of 5.4% measured via the
controlled experiment. The confound is common cause of users visiting
Yahoo! in the first place: Users who actively visit Yahoo! on a given day are
much more likely to see the display ad and to perform a Yahoo! search. The ad
exposure and the search behavior are highly positively correlated, but the
display ads have very little causal impact on the searches.

Next, videos were shown to users, and the question was whether these
would lead to increased activity. Users were recruited through Amazon Mech-
anical Turk, with half exposed to a 30-second video advertisement promoting
Yahoo.com services (the Treatment), and half to a political video advertise-
ment (the Control), and the goal was to measure whether there was increased
activity on Yahoo! Two analyses were done: an observational causal study of
the Treatment group before and after the exposure to the 30-second Yahoo!
ads, and an experimental analysis comparing the activity of the two groups
after seeing the ad. The observational causal study overstated the effects of the
ad by 350%. Here, the common confound is that being active on Amazon
Mechanical Turk on a given day increased the chance of participating in the
experiment and being active on Yahoo!

Finally, an ad campaign was shown to users on Yahoo! with the goal of
measuring whether users who saw the ad were more likely to sign up at the
competitor’s website on the day they saw the ad. The observational causal
study compared users exposed to the ad on the day they saw the ad relative
to the week before, while the experiment compared users who did not see
the ad but visited Yahoo! on that day to the users who came to Yahoo! on
the same day and saw the competitor ad. From the observational causal
study, exposed users were more likely to sign up at the competitor’s website
the day they saw the ad compared to the week before. However, from the
experiment, they observed a nearly identical lift. This result is similar to our
previous discussion of churn and errors: More active users are simply more
likely to do a broad range of activities. Using activity as a factor is typically
important.
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This is but one story and one comparison. A more recent comparison study
also found that observational causal studies were less accurate than online
controlled experiments (Gordon et al. 2018). We provide many more stories
online at https://bit.ly/experimentGuideRefutedObservationalStudies, showing
examples of unidentified common causes, time-sensitive confounds, popula-
tion differences lack of external validity, and more. Should you need to do an
observational causal study, please take care.
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PART IV

Advanced Topics for Building an
Experimentation Platform

Part IV expands on building experiment platforms from Chapter 4, with five
short chapters targeted towards engineers and data scientists. Product man-
agers should at least understand the issues discussed here, as they can affect
experiment design, as well as the data quality for experiment analysis.

Throughout this book, to make discussions simple, we primarily focus on
server-side experimentation. However, there are many thick clients, notably
mobile or desktop apps, where we need to run experiments on the client-side.
We provide key differences to consider when running Client-Side Experiments.

The next two topics are foundational no matter what stage of experimen-
tation maturity you are in.

First, high-quality Instrumentation is a pre-requisite for running trustworthy
online controlled experiments. Without instrumentation, you cannot get the
data or metrics to analyze experiments or even to determine the baseline
performance of your system. In this part, we discuss the key points of
instrumentation in the context of experimentation.

Next, while we have assumed user to be the randomization unit for simpli-
city throughout this book, there are other choices such as session or page.
Choosing a Randomization Unit is typically baked deeply into your system,
and it can both impact user experience and the validity of the analysis. We
describe various choices you can use and provide guidelines on how to choose
among them.

As you scale experimentation, you now need to consider additional areas.

First, ramping up experiments in a principled and controlled manner is
crucial for scale. We discuss Ramping Experiment Exposure: Trading Off
Speed, Quality, and Risk.

Finally, an automated and scalable data analysis pipeline is also critical for
scaling experimentation. We provide the common steps needed in Scaling
Experiment Analyses, including processing, computing and displaying the data.
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Client-Side Experiments

The difference between theory and practice is larger in practice than the
difference between theory and practice in theory
— Jan L.A. van de Snepscheut

Why you care: You can run experiments either on a thin client, such as a web
browser, or on a thick client, such as a native mobile app or a desktop client
app. Changes for a webpage, regardless of whether it is frontend or backend,
are fully controlled by the server. This is very different from a thick client. With
an explosive growth of mobile usage, the number of experiments running on
mobile apps has also grown (Xu and Chen 2016). Understanding the differ-
ences between thin and thick clients due to release process, infrastructure, and
user behavior is useful to ensure trustworthy experiments.

For most of this book, we assume thin clients when designing and running
experiments to keep the discussions simple. This chapter is devoted to discuss-
ing running experiments in thick clients, their differences and implications.

Differences between Server and Client Side

To simplify the terminology, we will use “client-side experiment” to refer to
experiment changes made within a thick client. We will use “server-side
experiment” to refer to experiment changes made server side, regardless of
whether it impacts a thick or thin client, and regardless of whether it is a UX
change or a backend change.

There are two main differences between server and client side that impact
online experiments: the release process and the data communication.

153
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Difference #1: Release Process

On an online website, it is common for new feature releases to happen
continuously, sometimes multiple times per day. Because changes are con-
trolled by the organization, updating server-side code is relatively easy as part
of continuous integration and deployment. When a user visits a site, the server
pushes the data (e.g., HTML) to the browser, without interrupting the end-user
experience. In a controlled experiment, the variant that the user sees is fully
managed by the server and no end user action is required. Whether to show a
red or yellow button, whether to show a newly revamped homepage or not—
these are all changes that can happen instantaneously after a server-side
deployment.

When it comes to client apps, many features can still be affected by services,
that is, code on the server side, such as the feed content shown in the Facebook
app. Changes affecting them would follow a similar release process as
described above for a webpage. In fact, the more we can rely on services,
the easier it is to experiment, both with regards to agility and consistency
across different clients. For example, many changes on Bing, Google, Linke-
dIn, and Office are made server side and impact all clients, whether web or
thick clients like mobile apps.

However, there is a significant amount of code shipped with the client itself.
Any changes to this code must be released differently. For example, in a mobile
app, developers do not have full control over the deployment and release cycle.
The release process involves three parties: the app owner (e.g., Facebook), the
app store (e.g., Google Play or Apple App Store), and the end user.

When the code is ready, the app owner needs to submit a build to the app
store for review. Assuming the build passes review (which can take days),
releasing it to everyone does not mean that everyone who visits the app will
have the new version. Instead, getting the new version is a software upgrade,
and users can choose to delay or even ignore the upgrade while continuing to
use the old version. Some end users take weeks to adopt. Some enterprise
organizations may not want updates and do not allow them for their users.

Some software, such as Exchange, runs in sovereign clouds that are
restricted from calling unapproved services. All of these considerations mean
that, at any given time, there are multiple versions of the app out there that the
app owner has to support. Similar challenges exist for native desktop clients
that have their own release mechanisms (e.g., Office, Adobe Acrobat, iTunes),
even though there may not be an app store review process involved.

It is worth pointing out that both the Google Play and Apple app stores now
support staged rollout (Apple, Inc. 2017, Google Console 2019). They both

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:54, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.017


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.017
https://www.cambridge.org/core

Differences between Server and Client Side 155

allow app owners to make the new app available to only a percentage of users
and pause if something problematic is discovered. Staged rollouts are essen-
tially randomized experiments, as the eligible users are selected at random.
Unfortunately, these rollouts cannot be analyzed as random experiments
because the app owners do not know which users are eligible to receive the
new app. App owners only know who has “adopted” the new app. We will
discuss this more later in this chapter.

App owners may not want to frequently push a new client version. Even
though there is no strict limit as how many times they can release a new
version, each update costs network bandwidth for users and can potentially be
an annoying user experience (depending on update and notification settings).
Windows or i0OS is a great example of something that cannot update as often
because some updates require a reboot.

Difference #2: Data Communication between
Client and Server

Now that the new app is in the hands of users, it has to communicate with the
server. The client needs to get the necessary data from the server, and it needs
to pass data back to the server on what is happening on the client. While we
refer readers to Chapter 13 for client-side instrumentation in general, here we
highlight some key factors when it comes to data communication for a native
mobile app. While it makes it easier to read this section with mobile in mind,
please note that with drastic technology improvement, the divide between
mobile and desktop is becoming nominal as a reflection of device capabilities
and improvement in network connections.

First, the data connection between the client and server may be limited or
delayed:

e Internet connectivity. Internet connections may not be reliable or consist-
ent. In some countries, users may be offline for days. Even users who are
normally online may not have internet access on a plane or be temporarily in
a zone with no available cellular or Wi-Fi networks. As a result, data
changes happening server side may not be pushed to these clients. Similarly,
data collection on the client may be delayed in transmitting back to the
server. These delays vary by country or demographic and must be
accounted for in instrumentation and downstream processing.

e Cellular data bandwidth. Most users have limited cellular data plans,
which raises the question of whether you only upload telemetry when the
user is on Wi-Fi or at any point in time. Most apps choose to send telemetry
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data over Wi-Fi only, which can delay when that data is received server
side. There can also be heterogeneity across countries, as mobile infrastruc-
ture in some countries is weaker than others when it comes to bandwidth,
cost, and so on.

Not only could the data connection itself be limited, but even if the
connection is good, using the network may impact device performance
and ultimately user engagement with the app (Dutta and Vadermeer 2018):

e Battery. More data communication implies increased battery consumption.
For example, the app can wake up more regularly to send more telemetry,
but that would impact battery consumption. Moreover, mobile devices in
low battery mode have restrictions on what apps are allowed to do (Apple,
Inc. 2018).

e CPU, latency, and performance. Even though many mobile devices
behave like minicomputers nowadays, there are still lower-end mobile
devices constrained by CPU power. Frequent data aggregation on the device
and sending data back-and-forth with the server can make the app less
responsive and hurt the overall performance of the app.

e Memory and storage. Caching is one way to reduce data communication
but impacts the size of the app, which impacts app performance and
increases app uninstallment (Reinhardt 2016). This may be a larger concern
for users with lower-end devices with less memory and storage.

Communication bandwidth and device performance are all part of the same
device ecosystem, with tradeoffs. For instance, we can get a more consistent
internet connection by using more cellular data; we can spend more CPU to
compute and aggregate on-device to reduce data sent back to the server; we
can wait for Wi-Fi to send tracking data by using more storage on-device.
These tradeoffs can impact both visibility into what is happening client side, as
well as user engagement and behavior (similar to Chapter 5), making it a
fruitful area for experimentation but also an area where care needs to be taken
to ensure trustworthy results.

Implications for Experiments

Implication #1: Anticipate Changes Early and Parameterize

As client code cannot be shipped to end users easily, controlled experiments on
any client-side changes need to be planned. In other words, all experiments,
including all variants for each of these experiments, need to be coded and
shipped with the current app build. Any new variants, including bug fixes on
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any existing variant, must wait for the next release. For example, in a typical
monthly release, Microsoft Office ships with hundreds of features that rollout
in a controlled manner to ensure safe deployment. This has three implications:

1. A new app may be released before certain features are completed, in which
case, these features are gated by configuration parameters, called feature
flags, that turn the features off by default. Features turned off this way are
called dark features. When the feature is finished and ready, sometimes
when the server-side service completes, it can be turned on.

2. More features are built so they are configurable from the server side. This
allows them to be evaluated in A/B tests, which helps both in measuring
performance via controlled experiments, and also provides a safety net. If a
feature does not perform well, we can instantly revert by shutting down the
feature (the variant in the controlled experiment) without having to go
through a lengthy client release cycle. This can prevent end users from
being stuck with a faulty app for weeks until the next release.

3. More fine-grained parameterization can be used extensively to add flexibil-
ity in creating new variants without needing a client release. This is because
even though new code cannot be pushed to the client easily, new configur-
ations can be passed, which effectively creates a new variant if the client
understands how to parse the configurations. For instance, we may want to
experiment on the number of feed items to fetch from the server at a time.
We could put our best guess in the client code and only experiment with
what we planned, or we can parameterize the number and have the freedom
to experiment post release. Windows 10 parameterized the search box text
in the task bar, ran experiments over a year after it shipped, with the
winning variant increasing user engagement and Bing revenue by millions
of dollars. Another common example is to update machine learning model
parameters from the server, so that a model can be tuned over time.

While we believe it is best for the user experience to test new features before
launching to all app users, there may be limitations imposed by app stores on
which features can be shipped dark. We suggest carefully reading app store
policies and appropriately disclosing dark features.

Implication #2: Expect a Delayed Logging and
Effective Starting Time

The limited or delayed data communication between client and server cannot
only delay the arrival of data instrumentation, but also the start time of the
experiment itself. First, the experiment implementation on the client side needs
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to be shipped with the new app version. Then, we can activate the experiment
for a small percentage of users. However, even then, the experiment is not fully
active because:

e User devices may not get the new experiment configuration, either because
devices are offline or because they are in limited or low bandwidth situ-
ations, where pushing new configurations can lead to increased costs or
poor experiences for the user.

o If the new experiment configuration is fetched only when a user opens the
app, the new assignment may not take effect until the next session as we do
not want to change a user’s experience after they have started the current
session. For heavy users with multiple sessions a day, this delay is small,
but for light users visiting once a week, the experiment may not start until a
week later.

e There can be many devices with old versions without the new experiment
code, particularly right after the new app release. Based on our experience,
the initial adoption phase takes about a week to reach a more stable adoption
rate, although this can vary greatly depending on the user population and the

type of app.

These delays in experiment start time and instrumentation arriving on the
server can impact experiment analysis, especially if the analysis is time
sensitive, for example, real-time or near real-time. First, signals at the begin-
ning of the experiment would appear to be weaker (smaller sample size), and
also have a strong selection bias towards frequent users and Wi-Fi users who
tend to be early adopters. Thus, the duration of an experiment may need to be
extended to account for delays. Another important implication is that Treat-
ment and Control variants may have a different effective starting times. Some
experiment platforms allow for shared Control variants, in which case the
Control variant may be live before the Treatment, and therefore have a
different user population due to selection bias. In addition, if the Control runs
earlier, the caches are warmed up so responses to service requests are faster,
which may introduce additional bias. As a result, the time period to compare
the Treatment and Control needs to be carefully chosen.

Implication #3: Create a Failsafe to Handle
Offline or Startup Cases

When users open an app, their device could be offline. For consistency
reasons, we should cache experiment assignment in case the next open occurs
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when the device is offline. In addition, if the server is not responding with the
configuration needed to decide on assignment, we should have a default
variant for an experiment. Some apps are also distributed as original equipment
manufacture (OEM) agreements. In these cases, experiments must be properly
set up for a first-run experience. This includes retrieving configurations that
would only impact the next startup, and a stable randomization ID before and
after users sign up or log in.

Implication #4: Triggered Analysis May Need Client-Side
Experiment Assignment Tracking

You may need to take additional care to enable triggered analysis for client-
side experiments. For example, one way to capture triggering information is to
send tracking data to the server when an experiment is used. However, to
reduce communications from the client to the server, experiment assignment
information is usually fetched for all active experiments at once (e.g., at the
start of the app), regardless of whether an experiment is triggered or not (see
Chapter 20). Relying on the tracking data at fetching time for triggered
analysis would lead to over-triggering. One way to address this problem is to
send the assignment information when a feature is actually used, thus requiring
experiment instrumentation to be sent from the client. Keep in mind that if the
volume of these tracking events is high, it could cause latency and perform-
ance issues.

Implication #5: Track Important Guardrails on
Device and App Level Health

Device-level performance may impact how the app performs. For instance, the
Treatment may be consuming more CPU and draining more battery power. If
we only track user engagement data, we may not discover the battery-drain
problem. Another example is that the Treatment may send more push notifica-
tions to users that then lead to an increased level of notification disablement via
device settings. These may not show up as a significant engagement drop
during the experiment but have a sizable long-term impact.

It is also important to track the overall health of the app. For example, we
should track app size, as a bigger app size is more likely to reduce downloads
and cause people to uninstall (Tolomei 2017, Google Developers 2019).
Similar behaviors may result due to an app’s internet bandwidth consumption,
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battery usage, or crash rate. For crashes, logging a clean exit allows sending
telemetry on a crash on the next app start.

Implication #6: Monitor Overall App Release through
Quasi-experimental Methods

Not all changes on the new app can be put behind an A/B parameter. To truly
run a randomized controlled experiment on the new app as a whole, bundle
both versions behind the same app and start some users on the new version,
while keeping others on the old version. This is not practical or ideal for most
apps, as it can double the app size. On the other hand, because not all users
adopt the new app version at the same time, there is a period of time where we
have both versions of the app serving real users. This effectively offers an A/B
comparison if we can correct for the adoption bias. Xu and Chen (2016) share
techniques to remove the bias in the mobile adoption setting.

Implication #7: Watch Out for Multiple
Devices/Platforms and Interactions between Them

It is common for a user to access the same site via multiple devices and
platforms, for example, desktop, mobile app, and mobile web. This can have
two implications.

1. Different IDs may be available on different devices. As a result, the same
user may be randomized into different variants on different devices. (Dmi-
triev et al. 2016).

2. There can be potential interactions between different devices. Many
browsers, including Edge, now have a “Continue on desktop” or “Continue
on mobile” sync feature to make it easier for users to switch between desktop
and mobile. It is also common to shift traffic between the mobile app and
mobile web. For example, if a user reads an e-mail from Amazon on their
phone and clicks it, the e-mail link can either take them directly to the
Amazon app (assuming they have the app installed) or to the mobile website.
When analyzing an experiment, it is important to know whether it may cause
or suffer from these interactions. If so, we cannot evaluate app performance
in isolation, but need to look at user behavior holistically across different
platforms. Another thing to watch for is that the user experience on one
platform (usually the app) can be better than on another platform. Directing
traffic from the app to the web tends to bring down total engagement, which
may be a confounding effect not intended by the experiment itself.
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Conclusions

We have devoted this chapter to the differences when experimenting on thin
vs. thick clients. While some differences are obvious, many are subtle but
critical. We need to put in extra care in order to design and analyze the
experiments properly. It is also important to point out that with rapid techno-
logical improvement, we expect many of the differences and implications to
evolve over time.
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13

Instrumentation

Everything that happens happens as it should, and if you observe
carefully, you will find this to be so
— Marcus Aurelius

Why you care: Before you can run any experiments, you must have instru-
mentation in place to log what is happening to the users and the system (e.g.,
website, application). Moreover, every business should have a baseline under-
standing of how the system is performing and how users interact with it, which
requires instrumentation. When running experiments, having rich data about
what users saw, their interactions (e.g., clicks, hovers, and time-to-click), and
system performance (e.g., latencies) is critical.

A detailed discussion of how to instrument a system is beyond the scope of
this book and highly dependent on system architecture (Wikipedia contribu-
tors, List of .NET libraries and frameworks 2019, Wikipedia contributors,
Logging as a Service 2019). This chapter discusses key points of instrumenta-
tion in the context of experimentation. Privacy is also a crucial consideration
when it comes to instrumentation, which we discuss in Chapter 9. In the
context of this book, we use the terms “instrument,” “track,” and “log”
interchangeably.

Client-Side vs. Server-Side Instrumentation

When implementing instrumentation, understanding what happens client side
vs. server side is important (Edmons et al. 2007, Zhang, Joseph and Rick-
abaugh 2018). The focus of client-side instrumentation is what the user experi-
ences, including what they see and do, for example:
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e User actions: What activities does the user do, such as clicks, hovers,
scrolls? At what times are these done? What actions are done on the client
without a server roundtrip? For example, there could be hovers generating
help text or form field errors. Slideshows allow users to click and flip
through slides, so capturing the times of those events is important.

e Performance: How long does it take the page (webpage or app page) to
display or become interactive? In Chapter 5, we discuss the complexities
around measuring the time from a search query request to displaying a
full page.

e Errors and crashes: JavaScript errors are common, and may be browser
dependent, and it is critical to track errors and crashes in client software.

System-side instrumentation focuses on what the system does, including:

e Performance: How long does it take for the server to generate the response,
and which component takes the longest? What is the performance at the
99th percentile?

e System response rate: How many requests has the server received
from the user? How many pages has the server served? How are retries
handled?

e System information: How many exceptions or errors does the system
throw? What is the cache hit rate?

Client-side instrumentation is useful as it offers a view of what the user sees
and does. For example, client-side malware can overwrite what the server
sends and this is only discoverable using client-side instrumentation (Kohavi
et al. 2014). However, client-side instrumentation has drawbacks in terms of
data accuracy and cost to the user. Here are specific concerns for JavaScript-
based clients (for mobile-related concerns, see Chapter 12):

1. Client-side instrumentation can utilize significant CPU cycles and network
bandwidth and deplete device batteries, impacting the user experience.
Large JavaScript snippets will impact load time. This increased latency
not only impacts user interaction on that visit, but also how likely those
users will return (see Chapter 5).

2. The JavaScript instrumentation can be lossy (Kohavi, Longbotham and
Walker 2010): web beacons are often used to track user interactions, such
as when users click a link to go to a new site; however, these beacons may
be lost when:

a. A new site loads before the web beacon is successfully sent, meaning
that the beacons can be cancelled and lost. The loss rate due to this race
condition varies by browser.
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b. We force the web beacon to be sent before the new site loads, such as via
a synchronous redirect. While the beacon lossiness decreases, latency
increases, resulting in a worse user experience and an increased likeli-
hood of the user abandoning the click.

¢. You can choose to implement either scenario depending on the applica-
tion. For example, because ad clicks must be reliably tracked as they
relate to payments and compliance requirements, b) is the preferred
scenario even though there is added latency.

d. Client clock can be changed, manually or automatically. This means that
the actual timing from the client may not be fully synchronized with
server time, which must be considered in downstream processing. For
example, never subtract client and server times, as they could be signifi-
cantly off even after adjusting for time zones.

Server-side instrumentation suffers less from these concerns. It offers a less
clear view of what the user is actually doing but can provide more granularity
of what is happening inside your system and why. For example, you can log
the time to generate the HTML for a page; because it is not impacted by the
network, the data tend to have lower variance, allowing for more sensitive
metrics. In search engine results, there are internal scores indicating why
specific search results were returned and their ranking. Instrumenting these
scores is useful for debugging and tuning the search algorithm. Another
example is logging the actual servers or data center the request is served from,
which allows for debugging of bad equipment or finding data centers under
stress. It is important to remember that servers also need to be synchronized
often. There can be scenarios where the request is served by one server while
the beacon is logged by another, creating a mismatch in timestamp.

Processing Logs from Multiple Sources

It is likely you will have multiple logs from different instrumentation streams
(Google 2019), such as:

e Logs from different client types (e.g., browser, mobile)
e [ogs from servers
e Per-user state (e.g., opt-ins and opt-outs)

It is important that you ensure that the relevant logs can be easily utilized and
combined by downstream processing. First, there must be a way to join logs.
The ideal case is to have a common identifier in all logs to serve as a join key.
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The join key must indicate which events are for the same user, or randomiza-
tion unit (see Chapter 14). You may also need a join key for specific events.
For instance, there can be a client-side event that indicates a user has seen a
particular screen and a corresponding server-side event that explains why the
user saw that particular screen and its elements. This join key would let you
know that those events were two views of the same event shown to the
same user.

Next, have some shared format to make downstream processing easier. This
shared format can be common fields (e.g., timestamp, country, language,
platform) and customized fields. Common fields are often the basis for seg-
ments used for analysis and targeting.

Culture of Instrumentation

Instrumentation should be treated as critical for the live site. Imagine flying a
plane with broken instruments in the panel. It is clearly unsafe, yet teams may
claim that there is no user impact to having broken instrumentation. How can
they know? Those teams do not have the information to know whether this is a
correct assumption because, without proper instrumentation, they are flying
blind. Indeed, the most difficult part of instrumentation is getting engineers to
instrument in the first place. This difficulty stems from both a time lag (time
from when the code is written to when the results are examined), as well as a
functional difference (i.e., the engineer creating the feature is often not the one
analyzing the logs to see how it performs). Here are a few tips on how to
improve this functional dissociation:

e Establish a cultural norm: nothing ships without instrumentation. Include
instrumentation as part of the specification. Ensure that broken instrumen-
tation has the same priority as a broken feature. It is too risky to fly a plane if
the gas gauge or altimeter is broken, even if it can still fly.

e Invest in testing instrumentation during development. Engineers creating
features can add any necessary instrumentation and can see the resulting
instrumentation in tests prior to submitting their code (and code reviewers
check!).

e Monitor the raw logs for quality. This includes things such as the number of
events by key dimensions or invariants that should be true (i.e., timestamps
fall within a particular range). Ensure that there are tools to detect outliers
on key observations and metrics. When a problem is detected in instrumen-
tation, developers across your organization should fix it right away.
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Choosing a Randomization Unit

[To generate random digits] a random frequency pulse source, providing
on the average about 100,000 pulses per second, was gated about once
per second by a constant frequency pulse . . . Production from the original
machine showed statistically significant biases, and the engineers had to
make several modifications and refinements of the circuits before
production of apparently satisfactory numbers was achieved. The basic
table of a million digits was then produced during May and June of 1947.
This table was subjected to fairly exhaustive tests and it was found that it
still contained small but statistically significant biases

A Million Random Digits with 100,000

Normal Deviates (RAND 1955)

Why you care: The choice of randomization unit is critical in experiment design,
as it affects both the user experience as well as what metrics can be used in
measuring the impact of an experiment. When building an experimentation
system, you need to think through what options you want to make available.
Understanding the options and the considerations to use when choosing
amongst them will lead to improved experiment design and analysis.

Identifiers are critical as the base randomization unit for experiments. The
same identifier can also be used as a join key for the downstream processing of
log files (see Chapter 13 and Chapter 16). Note that in this section we are
focusing on how to choose which identifier to use, rather than on base criteria
for randomization itself, such as ensuring the independence of assignment
(i.e., the variant assignment of one identifier should not tell us anything about
the variant assignment of another identifier) as well as ensuring the independ-
ence of assignment across experiments if an identifier can be assigned to
multiple experiments simultaneously (see Chapter 4).

166
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One axis to consider in choosing a randomization unit is granularity. For
example, websites have the following natural granularities:

e Page-level: Each new web page viewed on a site is considered a unit.

e Session-level: This unit is the group of webpages viewed on a single visit.
A session, or visit, is typically defined to end after 30 minutes of inactivity.

o User-level: All events from a single user is the unit. Note that a user is
typically an approximation of a real user, with web cookies or login IDs
typically used. Cookies can be erased, or in-private/incognito browser
sessions used, leading to overcounting of users. For login IDs, shared
accounts can lead to undercounting, whereas multiple accounts (e.g., users
may have multiple e-mail accounts) can lead to overcounting.

We’ll focus in on the examples on this axis for websites to discuss the main
considerations.

For search engines, where there can be multiple pageviews for a single
query, a query can be a level of granularity between page and session. We can
also consider a combination of user and day to be a unit, where events from the
same user on different days are in different units (Hohnhold, O’Brien and Tang
2015).

When trying to decide on the granularity, there are two main questions to
consider:

1. How important is the consistency of the user experience?
2. Which metrics matter?

For consistency, the main question is whether the user will notice the changes.
As an extreme example, imagine that the experiment is on font color. If we use
a fine granularity, such as page-level, then the font color could change with
every page. Another example is an experiment that introduces a new feature;
the feature may appear and disappear if the randomization is at the page-level
or the session-level. These are potentially bad and inconsistent user experi-
ences that can impact key metrics. The more the user will notice the Treatment,
the more important it is to use a coarser granularity in randomization to ensure
the consistency of the user experience.

Your choice of metrics and your choice of randomization unit also interact.
Finer levels of granularity for randomization creates more units, so the vari-
ance of the mean of a metric is smaller and the experiment will have more
statistical power to detect smaller changes. It is worth noting that randomizing
(and analyzing) by pageviews will lead to a tiny underestimation of the
variance of the Treatment effect (Deng, Lu and Litz 2017), but that underesti-
mation is very small in practice and is commonly ignored.
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While a lower variance in metrics may seem like an advantage for choosing
a finer granularity for randomization, there are several considerations to keep
in mind:

1. If features act across that level of granularity, you cannot use that level of
granularity for randomization. For example, if you have personalization or
other inter-page dependences, then randomizing by pageview is no longer
valid as what happens on one page affects what a user sees on the subse-
quent page and the pages are no longer independent. As another specific
example, if an experiment is using page-level randomization, and a user’s
first query is in the Treatment and the feature leads to poor search results,
the user may issue a reformulated second query that ends up in the Control.

2. Similarly, if metrics are computed across that level of granularity, then they
cannot be used to measure the results. For example, an experiment that uses
page-level randomization cannot measure whether the Treatment impacts
the total number of user sessions.

3. Exposing users to different variants may violate the stable unit treatment
value assumption (SUTVA, see Chapter 3) (Imbens and Rubin 2015),
which states that experiment units do not interfere with one another. If
users notice the different variants, that knowledge may impact their behav-
ior and interfere (see Chapter 22).

In some enterprise scenarios, such as Office, tenants would like consistent
experiences for the enterprise, limiting the ability to randomize by user. In
advertising businesses that have auctions where advertisers compete, you
could randomize by advertiser or by clusters of advertisers who are often
competing in the same auctions. In social networks, you can randomize by
clusters of friends to minimize interference (Xu et al. 2015, Ugander et al.
2013, Katzir, Liberty and Somekh 2012, Eckles, Karrer and Ugander 2017),
and this generalizes to networks generally if you consider components (Yoon
2018)

Randomization Unit and Analysis Unit

Generally, we recommend that the randomization unit be the same as (or
coarser than) the analysis unit in the metrics you care about.

It is easier to correctly compute the variance of the metrics when the analysis
unit is the same as the randomization unit, because the independence assump-
tion between units is reasonable in practice, and Deng et al. (2017) discuss the
independent and identical distribution (i.i.d.) assumption with regards to
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choice of randomization unit in detail. For example, randomizing by page
means that clicks on each pageview are independent, so computation for the
variance of the mean, click-through rate (clicks/pageviews), is standard. Simi-
larly, if the randomization unit is user and the metrics analysis unit is also user,
such as sessions-per-user, clicks-per-user, and pageviews-per-user, then the
analysis is relatively straightforward.

Having the randomization unit be coarser than the analysis unit, such as
randomizing by user and analyzing the click-through rate (by page), will work,
but requires more nuanced analyses methods such as bootstrap or the delta
method (Deng et al. 2017, Deng, Knoblich and Lu 2018, Tang et al. 2010,
Deng et al. 2011). See Chapter 18 and Chapter 19 for more discussion. In this
situation, the experiment results can be skewed by bots that use a single user
ID, e.g., a bot that has 10,000 pageviews all done using the same user ID. If
this type of scenario is a concern, consider bounding what any individual user
can contribute to the finer-grained metric or switching to a user-based metric
such as the average click-through rate-per-user, both of which bound the
contribution any single user can have on the result.

Conversely, when the metrics are computed at the user-level (e.g., sessions-
per-user or revenue-per-user) and the randomization is at a finer granularity
(i.e., page-level), the user’s experience likely contains a mix of variants. As a
result, computing metrics at the user-level is not meaningful; you cannot use
user-level metrics to evaluate an experiment when the randomization is by
page. If these metrics are part of your OEC, then you cannot use the finer levels
of granularity for randomization.

User-level Randomization

User-level randomization is the most common as it avoids inconsistent experi-
ence for the user and allows for long-term measurement such as user retention
(Deng et al. 2017). If you are using user-level randomization, you still have
several choices to consider:

e A signed-in user ID or login that users can use across devices and platforms.
Signed-in IDs are typically stable not just across platforms, but also longi-
tudinally across time.

e A pseudonymous user ID, such as a cookie. On most websites when a user
visits, the website writes a cookie containing an identifier (usually mostly
random). On mobile devices for native apps, the OS often provides a
cookie, such as Apple’s idFA or idFV or Android’s Advertising ID. These
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IDs are not persistent across platforms, so the same user visiting through
desktop browser and mobile web would be considered two different IDs.
These cookies are controllable by the user through either browser-level
controls or device OS-level controls, which means that cookies are typically
less persistent longitudinally than a signed-in user ID.

® A device ID is an immutable ID tied to a specific device. Because it is
immutable, these IDs are considered identifiable. Device IDs do not have
the cross-device or cross-platform consistency that a signed-in identifier has
but are typically stable longitudinally.

When debating between these choices, the key aspects to consider are func-
tional and ethical (see Chapter 9).

From a functional perspective, the main difference between these different
IDs is their scope. Signed-in user IDs cut across different devices and plat-
forms, so if you need that level of consistency and it is available, a signed-in
user ID is really your best choice. If you are testing a process that cuts across
the boundary of a user signing in, such as a new user on-boarding process that
includes a user signing in for the first time, then using a cookie or device ID is
more effective.

The other question about scope is the longitudinal stability of the ID. In
some experiments, the goal may be to measure whether there is a long-term
effect. Examples may include latency or speed changes (see Chapter 5) or or
the users’ learned response to ads (Hohnhold et al. 2015). For these cases use a
randomization unit with longevity, such as a signed-in user ID, long-lived
cookie, or device ID.

One final option that we do not recommend unless it is the only option is IP
address. IP-based variant assignment may be the only option for infrastructure
changes, such as for comparing latency using one hosting service (or one
hosting location) versus another, as this can often only be controlled at the IP
level. We do not recommend using IP addresses more generally, however,
because they vary in granularity. At one extreme, a user’s device IP address
may change when a user moves (e.g., a different [P address at home than
work), creating inconsistent experiences. At the other extreme, large com-
panies or ISPs have many users sharing a small set of IP addresses representing
the firewall. This can lead to low statistical power (i.e., do you have enough IP
addresses, especially to handle the wide variance), as well as potential skew
and outlier issues from aggregating large numbers of users into a single unit.

Randomization at a sub-user level is useful only if there is no carryover or
leakage (see Chapter 22), and is often chosen in such situations due to the
increase in power that comes from the increase in power.
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15

Ramping Experiment Exposure: Trading Off
Speed, Quality, and Risk

The real measure of success is the number of experiments that can be
crowded into 24 hours
— Thomas A. Edison

Why you care: While experimentation is widely adopted to accelerate product
innovation, how fast we innovate can be limited by how we experiment. To
control the unknown risks associated with new feature launches, we recom-
mend that experiments go through a ramp process, where we gradually
increase traffic to new Treatments. If we don’t do this in a principled way,
this process can introduce inefficiency and risk, decreasing product stability as
experimentation scales. Ramping effectively requires balancing three key
considerations: speed, quality, and risk.

What Is Ramping?

We often talk about running experiments with a given traffic allocation that
provides enough statistical power. In practice, it is common that an experiment
goes through a ramping process to control unknown risks associated with new
feature launches (aka. controlled exposure). For example, a new feature may start
by exposing the Treatment to only a small percentage of users. If the metrics look
reasonable and the system scales well, then we can expose more and more users to
the Treatment. We ramp the traffic until the Treatment reaches desired exposure
level. One of the most known negative examples is the initial launch of Health-
care.gov. The site collapsed as it was rolled out to 100% users on day one, only to
realize that it wasn’t ready to handle the load. This could have been mitigated if
they had rolled out the site by geographic areas or last names A—Z. Insisting on a
ramping process became a key lesson for subsequent launches (Levy 2014).
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172 15 Ramping Experiment Exposure

How do we decide which incremental ramps we need and how long we
should stay at each increment? Ramping too slowly wastes time and resources.
Ramping too quickly may hurt users and risks making suboptimal decisions.
While we can democratize experimentation with a fully self-served platform as
described in Chapter 4, we need principles on how to ramp to guide experi-
menters and ideally, tooling to automate the process and enforce the principles
at scale.

We primarily focus on the process of ramping up. Ramping down is
typically used when we have a bad Treatment, in which case we typically shut
it down to zero very quickly to limit the user impact. In addition, large
enterprises usually control their own client-side updates, so they are effectively
excluded from some experiments and ramping exposure.

SQR Ramping Framework

In the ramp process, how can we iterate fast while controlling risk and
improving decision quality? In other words, how do we balance speed,
quality, and risk (SQR)? Consider why we run controlled online experiments:

o To measure the impact and Return-On-Investment (ROI) of the Treatment
if it launched to 100%.

e To reduce risk by minimizing damage and cost to users and business
during an experiment (i.e., when there is a negative impact).

e To learn about users’ reactions, ideally by segments, to identify potential
bugs, and to inform future plans. This is either as part of running any
standard experiments, or when running experiments designed for learning
(see Chapter 5).

If the only reason to run a controlled experiment is to measure, we could run
the experiment at the maximum power ramp (MPR)', which often means a
50% traffic allocation to the Treatment providing the highest statistical sensi-
tivity, assuming our goal is to ramp that Treatment to 100%. This gives us
the fastest and the most precise measurement. However, we may not want to
start at MPR — what if something goes wrong? That is why we usually

! If the experiment has the entire 100% traffic with only one Treatment, the variance in the two-
sample t-test is proportional to 1/g(1 — g), where g is the treatment traffic percentage. The MPR
in this case has a 50/50 traffic allocation. If there is only 20% traffic available to experiment
between one Treatment and one Control, the MPR has a 10/10 split, and so on. If there are four
variants splitting 100% traffic, then each variant should get 25%.
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Four Ramp Phases 173

start at a small exposure with the goal to contain the impact and mitigate
potential risk.

We may also need intermediate ramp stages between MPR and 100%. For
example, for operational reasons we may need to wait at 75% to ensure that the
new services or endpoints can scale to the increasing traffic load.

Another common example is to learn. While learning should be part of
every ramp, we sometimes conduct a long-term holdout ramp, where a small
fraction (e.g., 5-10%) of users do not receive the new Treatment for a period of
time (e.g., two months) primarily for learning purposes. The goal is to learn
whether the impact measured during MPR is sustainable in the long term. See
more discussion in Chapter 23.

Four Ramp Phases

Figure 15.1 illustrates the principles and techniques for balancing speed, qual-
ity, and risk in the four ramp phases. For more discussion, see Xu et al. (2018).

For simplicity, let’s assume that our goal is to ramp a single Treatment to
100%, so the MPR has 50% Treatment exposure. Putting all the pieces
together, the SQR framework divides the whole ramp process into four phases,
each with a primary goal.

The first phase is mainly for risk mitigation, so the SQR framework focuses
on trading off speed and risk. The second phase is for precise measurement, so
the focus is on trading off speed and quality. The last two phases are optional
and address additional operational concerns (third phase) and long-term impact
(fourth phase).

Launch

100% A Long-term holdout (as needed)

Mitigate
Risk

Post-MPR (short ramps, operational only)

MPR (Maximum Power Ramp) (e.g. a week)

Mitigate
Risk

Percent Assigned
to Treatment
a
o
ES

Pre-MPR (short ramps)

0%

Figure 15.1 Four phases of the ramping process

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:55, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.020


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.020
https://www.cambridge.org/core

174 15 Ramping Experiment Exposure

Ramp Phase One: Pre-MPR

In this phase, you want to safely determine that the risk is small and ramp
quickly to the MPR. You can use these methods:

1. Create “rings” of testing populations and gradually expose the Treatment to
successive rings to mitigate risk. The first rings are usually to get qualitative
feedbacks, as there simply isn’t enough traffic to get a meaningful read on
data. The next rings may have quantitative measurement but still be uncon-
trolled as the statistical power is low. Many bugs can be identified during
the early rings. Note that measurements from the early rings can be biased
as those users are likely the “insiders.” Commonly used rings are:

a) Whitelisted individuals, such as the team implementing the new feature.
You can get verbatim feedback from your team members.

b) Company employees, as they are typically more forgiving if there are
bad bugs.

c) Beta users or insiders who tend to be vocal and loyal, who want to see
new features sooner, and who are usually willing to give feedback.

d) Data centers to isolate interactions that can be challenging to identify,
such as memory leaks (death by slow leak) or other inappropriate use of
resources (e.g., heavy disk I/O) (see Chapter 22). At Bing, the common
ramp-up is single-data center small traffic (e.g., 0.5-2%). When a single
data center is ramped up to a decent traffic, then all data centers can
ramp up.

2. Automatically dialing up traffic until it reaches the desired allocation. The
desired allocation can either be a particular ring or a preset traffic allocation
percentage. Even if the desired allocation is only a small percentage (e.g.,
5%), taking an extra hour to reach 5% can help limit the impact of bad bugs
without adding much delay.

3. Producing real-time or near-real-time measurements on key guardrail
metrics. The sooner you can get a read on whether an experiment is risky,
the faster you can decide to go to the next ramp phase.

Ramp Phase Two: MPR

MPR is the ramp phase dedicated to measuring the impact of the experiment.
The many discussions we have throughout the book around producing trust-
worthy results directly apply in this phase. We want to highlight our recom-
mendation to keep experiments at MPR for a week, and longer if novelty or
primacy effects are present.
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Four Ramp Phases 175

This ramp phase must be long enough to capture time-dependent factors.
For example, an experiment that runs for only one day will have results biased
towards heavy users. Similarly, users who visit during weekdays tend to be
different from users visiting on weekends.

While we usually get smaller variance with a longer experiment, there is a
diminishing return as we wait longer. In our experience, the precision gained
after a week tends to be small if there are no novelty or primacy trends in the
Treatment effect.

Ramp Phase Three: Post-MPR

By the time an experiment is past the MPR phase, there should be no concerns
regarding end-user impact. Optimally, operational concerns should also be
resolved in earlier ramps. There are some concerns about increasing traffic
load to some engineering infrastructures that may warrant incremental ramps
before going to 100%. These ramps should only take a day or less, usually
covering peak traffic periods with close monitoring.

Ramp Phase Four: Long-Term Holdout or Replication

We have seen increasing popularity in long-term holdouts, also called
holdbacks, where certain users do not get exposed to Treatment for a long
time. We want to caution not to make a long-term holdout a default step in the
ramping process. Besides the cost, it could also be unethical when we know
there is a superior experience but deliberately delay the delivery of such
experience, especially when customers are paying equally. Decide to do a
long-term holdout only if it can be truly useful. Here are three scenarios where
we have found a long-term holdout to be useful:

1. When the long-term Treatment effect may be different from the short-term
effect (see Chapter 23). This can be because:
a. The experiment area is known to have a novelty or primacy effect, or
b. The short-term impact on key metrics is so large that we must ensure that
the impact is sustainable for reasons, such as financial forecasting, or
c. The short-term impact is small-to-none, but teams believe in a delayed
effect (e.g., due to adoption or discoverability).
2. When an early indicator metric shows impact, but the true-north metric is a
long-term metric, such as a one-month retention.
3. When there is a benefit of variance reduction for holding longer (see
Chapter 22).
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176 15 Ramping Experiment Exposure

There is a misconception that holdout should always be conducted with a
majority of the traffic in Treatment, such as 90% or 95%. While this may work
well in general, for the 1c scenario discussed here where the short-term impact
is already too small to be detected at MPR, we should continue the holdout at
MPR if possible. The statistical sensitivity gained by running longer is usually
not enough to offset the sensitivity loss by going from MPR to 90%.

In addition to holdouts at the experiment level, there are companies that
have uber holdouts, where some portion of traffic is withheld from any feature
launch over a long term (often a quarter) to measure the cumulative impact
across experiments. Bing conducts a global holdout to measure the overhead of
experimentation platform (Kohavi et al. 2013), where 10% of Bing users are
withheld from any experiments. There can also be reverse experiments, where
users are put back into Control several weeks (or months) after the Treatment
launches to 100% (see Chapter 23).

When experiment results are surprising, a good rule of thumb is to replicate
them. Rerun the experiment with a different set of users or with an orthogonal
re-randomization. If the results remain the same, you can have a lot more
confidence that the results are trustworthy. Replication is a simple yet effective
way to eliminate spurious errors. Moreover, when there have been many
iterations of an experiment, the results from the final iteration may be biased
upwards. A replication run reduces the multiple-testing concern and provides
an unbiased estimate. See Chapter 17 see more discussion.

Post Final Ramp

We have not discussed what happens after an experiment is ramped to 100%.
Depending on the implementation details of the experiment (see Chapter 4),
there can be different post ramp cleanup needed. If the experiment system uses
the architecture that creates a code fork based on variant assignment, one
should clean up the dead code path after launch. If the experiment system uses
a parameter system, then cleanup would simply mean to use the new parameter
value as the default. This process may be overlooked in fast-moving develop-
ment process, but it is critical for keeping the production system healthy. For
example, in the first case, it can be disastrous when a dead code path that is not
being maintained for a while is accidentally executed, which could happen
when the experiment system has an outage.
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Scaling Experiment Analyses

If you want to increase your success rate, double your failure rate
— Thomas J. Watson

Why you care: For a company to move to the later phases of experimentation
maturity (“Run” or “Fly”), incorporating data analysis pipelines as part of
the experimentation platform can ensure that the methodology is solid, con-
sistent, and scientifically founded, and that the implementation is trustworthy.
It also helps save teams from needing to do time-consuming ad hoc analysis. If
moving in this direction, understanding the common infrastructure steps for
data processing, computation, and visualization can be useful.

Data Processing

To get the raw instrumented data into a state suitable for computation, we need
to cook the data. Cooking data typically involves the following steps.

1. Sort and group the data. As information about a user request may be
logged by multiple systems, including both client- and server-side logs, we
start by sorting and joining multiple logs (see Chapter 13). We can sort by
both the user ID and timestamp. This allows joining events to create
sessions or visits, and to group all activity by a specified time window.
You may not need to materialize this join, as a virtual join as a step during
processing and computation may suffice. Materialization is useful if the
output is used not just for experimentation analysis, but also for debugging,
hypothesis generation, and more.

2. Clean the data. Having the data sorted and grouped makes it easier to clean
the data. We can use heuristics to remove sessions that are unlikely to be
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178 16 Scaling Experiment Analyses

real users (e.g., bots or fraud, see Chapter 3). Some useful heuristics on
sessions are whether the sessions have too much or too little activity, too
little time between events, too many clicks on a page, users who engage
with the site in ways that defy the laws of physics, and so on. We can also
fix instrumentation issues, such as duplicate event detection or incorrect
timestamp handling. Data cleansing cannot fix missing events, which may
be a result of lossiness in the underlying data collection. Click logging, for
example, is inherently a tradeoff between fidelity and speed (Kohavi,
Longbotham and Walker 2010). Some filtering may unintentionally remove
more events from one variant than another, potentially causing a sample
ration mismatch (SRM) (see Chapter 3).

3. Enrich the data. Some data can be parsed and enriched to provide useful
dimensions or useful measures. For example, we often add browser family
and version by parsing a user agent raw string. Day of week may be
extracted from dates. Enrichments can happen at a per-event, per-session
or per-user levels, such as marking an event as a duplicate or computing
event duration, adding the total number of events during the session or the
total session duration. Specific to experiments, you may want to annotate
whether to include this session in the computation of the experiment results.
These annotations are pieces of business logic that are often added during
enrichment for performance reasons. Other experimentation specific anno-
tations to consider include experiment transitions information (e.g., starting
an experiment, ramping up an experiment, changing the version number) to
help determine whether to include this session in the computation of the
experiment results. These annotations are pieces of business logic that are
often added for performance reasons.

Data Computation

Given the processed data, you can now compute the segments and metrics, and
aggregate the results to get summary statistics for each experiment, including
both the estimated Treatment effect itself (e.g., delta of mean or percentiles)
and the statistical significance information (p-value, confidence interval, etc.).
Additional information, such as which segments are interesting can also occur
within the data computation step (Fabijan, Dmitriev and McFarland et al.
2018).

There are many options for how to architect the data computation. We
describe two common approaches. Without loss of generality, we assume the
experimental unit is user.
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Data Computation 179

1. The first approach is to materialize per-user statistics (i.e., for every user,
count the number of pageviews, impressions, and clicks) and join that to a
table that maps users to experiments. The advantage of this approach is that
you can use the per-user statistics for overall business reporting, not just
experiments. To effectively utilize compute resources, you may also con-
sider a flexible way to compute metrics or segments that are only needed for
one or a small set of experiments.

2. An alternative architecture is to fully integrate the computation of per-user
metrics with the experiment analysis, where per-user metrics are computed
along the way as needed without being materialized separately. Typically,
in this architecture, there is some way to share the definitions of metrics and
segments to ensure consistency among the different pipelines, such as the
experiments data computation pipeline and the overall business reporting
computation pipeline. This architecture allows more flexibility per-
experiment (which may also save machine and storage resources) but
requires additional work to ensure consistency across multiple pipelines.

Speed and efficiency increase in importance as experimentation scales across
an organization. Bing, LinkedIn, and Google all process terabytes of experi-
ment data daily (Kohavi et al. 2013). As the number of segments and metrics
increase, the computation can be quite resource-intensive. Moreover, any
delay in experiment scorecard generation can add delay to decision making,
which can be costly as experimentation becomes more common and integral to
the innovation cycle. In the early days of the experimentation platform, Bing,
Google, and LinkedIn generated experiment scorecards daily with a ~24-hour
delay (e.g., Monday’s data shows up by end-of-day Wednesday). Today, we
all have near real-time (NRT) paths. The NRT path has simpler metrics and
computations (i.e., sums and counts, no spam filtering, minimal statistical
tests) and is used to monitor for egregious problems (such as a misconfigured
or buggy experiment), and often operates directly on raw logs without the data
processing discussed above (except for some real-time spam processing). The
NRT path can then trigger alerts and automatic experiment shut-off. The batch
processing pipeline handles intra-day computation and updates to the data
processing and computation to ensure that trustworthy experiment results are
available in a timely manner.

To ensure speed and efficiency as well as correctness and trustworthiness,
we recommend that every experimentation platform:

o Have a way to define common metrics and definitions so that everyone
shares a standard vocabulary, everyone builds the same data intuition, and
you can discuss the interesting product questions rather than re-litigating
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180 16 Scaling Experiment Analyses

definitions and investigating surprising deltas between similar-looking
metrics produced by different systems.

e Ensure consistency in the implementation of those definitions, be it a
common implementation or some testing or ongoing comparison
mechanism.

e Think through change management. As discussed in the experimentation
maturity model (see Chapter 4), the metrics, OEC, and segments will all
evolve, so specifying and propagating changes is a recurring process.
Changing the definition of an existing metric is often more challenging than
additions or deletions. For example, do you backfill the data (e.g., do you
propagate the changes historically), and if so, for how long?

Results Summary and Visualization

Ultimately, the goal is to visually summarize and highlight key metrics and
segments to guide decision makers. In your summary and visualizations:

e Highlight key tests, such as SRM, to clearly indicate whether the results are
trustworthy. For example, Microsoft’s experimentation platform (ExP)
hides the scorecard if key tests fail.

e Highlight the OEC and critical metrics, but also show the many other
metrics, including guardrails, quality, and so on.

e Present metrics as a relative change, with clear indications as to whether the
results are statistically significant. Use color-coding and enable filters, so
that significant changes are salient.

Segment drill-downs, including automatically highlighting interesting seg-
ments, can help ensure that decisions are correct and help determine whether
there are ways to improve the product for poorly behaving segments (Wager
and Athey 2018, Fabijan, Dmitriev and McFarland et al. 2018). If an experi-
ment has triggering conditions, it is important to include the overall impact in
addition to the impact on the triggered population (for more details, see
Chapter 20).

Beyond the visualization itself, to truly scale experimentation, scorecard
visualizations should be accessible to people with various technical back-
grounds, from Marketers to Data Scientists and Engineers to Product Man-
agers. This requires ensuring that not just experimenters, but executives and
other decision makers see and understand the dashboard. This may also mean
hiding some metrics, such as the debugging metrics from the less technical
audience, to reduce confusion. Information accessibility helps establish a

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:55, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.021


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.021
https://www.cambridge.org/core

Results Summary and Visualization 181

common language for definitions and a culture of transparency and curiosity,
encouraging employees to run experiments and learn about how changes
impact the business or how Finance can tie A/B test results to business
outlook.

The visualization tool is not just for per-experiment results but is also useful
for pivoting to per-metric results across experiments. While innovation tends
to be decentralized and evaluated through experimentation, the global health of
key metrics is usually closely monitored by stakeholders. Stakeholders should
have visibility into the top experiments impacting the metrics they care about.
If an experiment is hurting their metrics above some threshold, they may want
to be involved in making the launch decision. A centralized experimentation
platform can unify views of both the experiments and the metrics. Two
optional features the platform can provide to cultivate a healthy decision
process are:

1. Allow individuals to subscribe to metrics they care about and get an email
digest with the top experiments impacting these metrics.

2. If an experiment has a negative impact, the platform can initiate an approval
process, where it forces the experiment owner to start a conversation with
the metrics owners before the experiment can be ramped up. Not only does
this drive transparency regarding experiment launch decisions, it encour-
ages discussion, which increases the overall knowledge of experimentation
in the company.

The visualization tools can also be a gateway to accessing institutional
memory (see Chapter 8).

Finally, as an organization moves into the Run and Fly phases of experi-
mentation maturity, how many metrics your organization uses will continue
to grow, even into the thousands, at which point we suggest using these
features:

e (Categorizing metrics into different groups, either by tier or function. For
instance, LinkedIn categorizes metrics into three tiers: 1) Companywide 2)
Product Specific 3) Feature Specific (Xu et al. 2015). Microsoft groups
metrics into 1) Data quality 2) OEC 3) Guardrail 3) Local features/diagnos-
tic (Dmitriev et al. 2017). Google uses categories similar to LinkedIn. The
visualization tool provides controls to dig into different groups of metrics.

e Multiple testing (Romano et al. 2016) becomes more important as the
number of metrics grow, with one common question from experimenters:
Why did this metric move significantly when it seems irrelevant? While
education helps, one simple yet effective option is using p-value thresholds
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smaller than the standard value of 0.05, as it allows experimenters to
quickly filter down to the most significant metrics. See Chapter 17 for more
discussion on well-studied approaches such as the Benjamini-Hochberg
procedure to address multiple testing concerns.

o Metrics of interest. When an experimenter goes through the experiment
results, they likely already have a set of metrics in mind to review. How-
ever, there are always unexpected movements in other metrics that are
worth examining. The platform can automatically identify these metrics
by combining multiple factors, such as the importance of these metrics for
the company, statistical significance, and false positive adjustment.

o Related metrics. A metric’s movement or lack of movement can often be
explained by other related metrics. For example, when click-through rate
(CTR) is up, is it because clicks are up or because page views are down?
The reason for the movement may lead to different launch decisions.
Another example is metrics with high variance such as revenue. Having a
more sensitive, lower variance version such as trimmed revenue or other
indicators, allows more informed decisions.
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PART V

Advanced Topics for Analyzing
Experiments

Part V includes seven advanced analysis topics, targeted primarily at data
scientists and those interested in deeper understanding of the design and
analysis of controlled experiments.

We begin with The Statistics behind Online Controlled Experiments, which
outlines the t-test, p-value and confidence-interval calculations, normality
assumptions, statistical power, and Type I/II errors. It covers multiple testing
and Fisher’s method for meta-analysis.

The next chapter is Variance Estimation and Improved Sensitivity: Pitfalls
and Solutions, where we begin with the standard formula, but then show a very
common pitfall that requires the use of the delta method. We then review ways
to reduce the variance, which improves the sensitivity of experiments.

The A/A Test covers what is perhaps the best way to improve the trustworthi-
ness of the experimentation system and uncover practical problems and bugs in
the software or the Statistics used. Many of the pitfalls we discuss were
uncovered because of A/A tests.

The chapter on Triggering Improved Sensitivity elaborates on a critical
concept that organizations need to understand — triggering. Because not every
experiment impacts all users, focusing on the impacted population improves
sensitivity by reducing the noise of users who could not have been affected. As
organizations mature, the use of triggering grows, and with it the tools to help
analyze and debug issues.

The next chapter looks at the Sample Ratio Mismatch (SRM) and Other
Trust-Related Guardrail metrics. SRMs are common in practice and when
there is an SRM, the results look extremely positive or extremely negative, but
they cannot be trusted. Automatically running this test (and others) is critical
for the trustworthiness of the results.
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In some practical scenarios, such as multi-sided marketplaces and social
networks, the experiment variants may leak information, a topic we deal with
in Leakage and Interference between Variants.

We conclude this part of the book with an important problem that is still an
ongoing research topic: Measuring Long-Term Treatment Effects. We present
several experimental designs to address the goal.

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:54, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.022


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.022
https://www.cambridge.org/core

17

The Statistics behind Online
Controlled Experiments

Smoking is one of the leading causes of statistics
— Fletcher Knebel

Why you care: Statistics are fundamental to designing and analyzing experiments.

We introduced several statistical concepts. This chapter goes deeper on the
Statistics critical to experimentation, including hypothesis testing and statis-
tical power (Lehmann and Romano 2005, Casella and Berger 2001, Kohavi,
Longbotham et al. 2009).

Two-Sample t-Test

Two-sample t-tests are the most common statistical significance tests for deter-
mining whether the difference we see between Treatment and Control is real or
just noise (Student 1908; Wasserman 2004). Two-sample t-tests look at the size
of the difference between the two means relative to the variance. The signifi-
cance of the difference is represented by the p-value. The lower the p-value, the
stronger the evidence that the Treatment is different from the Control.

To apply the two-sample t-test to a metric of interest Y (e.g., queries-per-
user), assume that the observed values of the metric for users in the Treatment
and Control are independent realizations of random variables, ¥* and Y°. The
Null hypothesis is that ¥* and Y° have the same mean; the alternative hypoth-
esis is that they do not (see Equation 17.1):

Hy: mean(Y') = mean(Y°)
a17.1)

H, : mean(Y') # mean(Y°)
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186 17 Statistics Behind Online Controlled Experiments

The two-sample t-test is based on the t-statistic, 7:

4
T=——(4 17.2
Za @ (172)
where, A = Y* — Y° is the difference between the Treatment average and the
Control average, an unbiased estimator for the shift of the mean. Because the
samples are independent:

var(4) = var (F - F) = var(?) + var(Y°) (17.3)

The t-statistic T is just a normalized version of A.

Intuitively, the larger the 7, the less likely it is that the means are the same.
In other words, you are more likely to reject the Null hypothesis. How do we
quantify this?

p-Value and Confidence Interval

Now that you have the t-statistic 7, you can compute the p-value, which is the
probability that 7 would be at least this extreme if there really is no difference
between Treatment and Control. By convention, any difference with a p-value
smaller than 0.05 is considered “statistically significant,” though there are
ongoing debates calling for lower p-values by default (Benjamin et al. 2017).
A p-value less than 0.01 is considered very significant.

Even though p-value is one of the most well-known statistical terms, it is often
misinterpreted. One common misinterpretation is that the p-value captures the
probability that the Null hypothesis is true given the data observed. This is a
reasonable interpretation on the surface as most experimenters would expect to
get a probability on whether their Treatment has impact. However, the correct
interpretation is almost the opposite, which is the probability of observing the
delta if the Null hypothesis is true. To see how these two interpretations are
different yet related, you can break it down using Bayes rule:

P(4 observed |Hy is true)P(Hy is true)
P(4 observed)

_ P(Hy is true)

~ P(4 observed)

P(H, is true)

=——- % l
P(4 observed) pratue

P(H, is true |4 observed) =

% P(4 observed |H is true)

(17.4)
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Normality Assumption 187

As indicated in the equation, to know whether the Null hypothesis is true based
on data collected (posterior probability), you not only need a p-value but also
the likelihood that the Null hypothesis is true.

Another way to examine whether the delta is statistically significant is to
check whether the confidence interval overlaps with zero. Some people find
confidence intervals a more intuitive way to interpret the noise and uncertainty
around the observed delta than the p-value. A 95% confidence interval is the
range that covers the true difference 95% of the time and has an equivalence to
a p-value of 0.05; the delta is statistically significant at 0.05 significance level
if the 95% confidence interval does not contain zero or if the p-value is less
than 0.05. In most cases, the confidence interval for the delta centers around
the observed delta with an extension of about two standard deviations on each
side. This is true for any statistics that (approximately) follow the normal
distribution, including the percent delta.

Normality Assumption

In most cases we compute p-values with the assumption that the t-statistic T
follows a normal distribution, and under the Null hypothesis the distribution has
a mean 0 and variance 1. The p-value is just the area under the normal curve, as
highlighted in Figure 2.1 in Chapter 2. Many people misinterpret the normality
assumption to be an assumption on the sample distribution of the metric Y, and
consider it a poor assumption because almost none of the metrics used in practice
follow a normal distribution. However, in most online experiments the sample
sizes for both Control and Treatment are at least in the thousands. While the sample
distribution of ¥ does not follow normal distribution, the average ¥ usually does
because of the Central Limit Theorem (Billingsly 1995). Figure 17.1 illustrates the
convergence with samples Y drawn from a beta distribution. As the sample size
increases, the distribution of the mean ¥ becomes more normally distributed.
One rule-of-thumb for the minimum number of samples needed for the
average Y to have normal distribution is 355s> for each variant (Kohavi
2014), where s is the skewness coefficient of the sample distribution of the
metric Y defined as in Equation 17.5:
3
s = % (17.5)
[Var(Y)]
Some metrics, especially revenue metrics, tend to have a high skewness
coefficient. One effective way to reduce skewness is to transform the metric or
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--== Normal distribution ~=——n=3

....... n=1 n=100

Figure 17.1 Distribution of the mean becomes increasingly normal as the sample
size n increases

cap the values. For example, after Bing capped Revenue/User to $10 per user per
week, they saw skewness drop from 18 to 5, and the minimum sample needed
drop tenfold from 114k to 10k. This rule-of-thumb provides good guidance for
when Isl > 1 but does not offer a useful lower bound when the distribution is
symmetric or has small skewness. On the other hand, it is generally true that
fewer samples are needed when skewness is smaller (Tyurin 2009).

For two-sample t-tests, because you are looking at the difference of the two
variables with similar distributions, the number of samples needed for the
normality assumption to be plausible tends to be fewer. This is especially the
case if Treatment and Control have equal traffic allocations (Kohavi 2014), as
the distribution of the difference is approximately symmetric (it is perfectly
symmetric with zero skewness under the Null hypothesis).

If you ever wonder whether your sample size is large enough to assume
normality, test it at least once with offline simulation. You can randomly
shuffle samples across Treatment and Control to generate the null distribution
and compare that distribution with the normal curve using statistical tests such
as Kolmogorov—Smirnov and Anderson-Darling (Razali and Wah 2011). As
the tail distribution is of interest in hypothesis testing, you can also increase
test sensitivity by only focusing on whether the Type I error rate is bounded by
the preset threshold, for example, 0.05.

When the normality assumption fails, you can then do a permutation test
(Efron and Tibshriani 1994) and see where your observation stands relative to
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Type I/II Errors and Power 189

the simulated null distribution. Note that even though a permutation test is very
expensive to run at scale, occasions when it is needed are often with small
sample sizes, so it works out nicely in practice.

Type I/II Errors and Power

With any test there are errors. In hypothesis testing, we care about Type I and
Type II errors. A Type I error is concluding that there is a significant difference
between Treatment and Control when there is no real difference. A Type II
error is when we conclude that there is no significant difference when there
really is one. You control Type I error rates at 0.05 by concluding statistical
significance only if the p-value < 0.05. Clearly, there is a tradeoff between
these two errors. Using a higher p-value threshold means a higher Type I error
rate but a smaller chance of missing a real difference, therefore a lower Type II
error rate.

The concept of Type II errors is better known as power. Power is the
probability of detecting a difference between the variants , that is, rejecting
the null, when there really is a difference(see Equation 17.6):

Power=1 — Type Il error (17.6)

Power is typically parameterized by delta, J, the minimum delta of practical
interest. Mathematically, assuming the desired confidence level is 95%, the
equation is as in Equation 17.7:

Powers = P(IT1 > 1.96 ltrue diff is J). 7.7

The industry standard is to achieve at least 80% power in our tests.
Therefore, it is common to conduct power analysis before starting the
experiment to decide how many samples are needed to achieve sufficient
power. Assuming Treatment and Control are of equal size, the total number
of samples you need to achieve 80% power can be derived from the power
formula above, and is approximately as shown in Equation 17.8 (van Belle
2008):

(17.8)

where, o” is the sample variance, and J is the difference between Treatment
and Control. A common question people ask is that how would they know ¢
before they run the experiment? It is true that we do not know the true J and
that is the reason to run the experiment to begin with.

Downloaded from https://www.cambridge.org/core. University of Toronto, on 19 Jan 2021 at 22:46:53, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108653985.023


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108653985.023
https://www.cambridge.org/core

190 17 Statistics Behind Online Controlled Experiments

O Power is lower for “smaller” differences

.~

AY . . .
' 1 Power is higher for “larger” differences
-

Figure 17.2 Analogy of statistical power with the game “Spot the difference.”
Power is higher for detecting a larger difference

However, we know the size of ¢ that would matter in practice, in other
words, that of practical significance. For example, you could miss detecting a
difference of 0.1% in revenue and that’s fine, but a drop of 1% revenue is not
fine. In this case, 0.1% is not practically significant while 1% is. To estimate
the required minimum sample size, use the smallest ¢ that is practically
significant (also called the minimum detectable effect).

For online experiments, sample size estimation is more complex because
online users visit over time, so the duration of the experiment also plays a role
in the actual sample size of an experiment. Depending on the randomization
unit, the sample variance ¢~ can also change over time. Another challenge is
that with triggered analysis (see Chapter 20), the values 6> and d change as the
trigger conditions change across experiments. For these reasons, we present a
more practical approach in Chapter 15 for deciding traffic allocation and the
duration for most online experiments.

We want to highlight a common misinterpretation of the concept of statis-
tical power. Many people consider power an absolute property of a test and
forget that it is relative to the size of the effect you want to detect. An
experiment that has enough power to detect a 10% difference does not
necessarily have enough power to detect a 1% difference. A good analogy is
the game “spot the difference.” Figure 17.2 demonstrates that relative to
difference in the spots (solid circle), it is easier to detect the difference on
the lily pads (dashed circle) as it is a larger difference.

As you can tell, power analysis is deeply coupled with Type I and II errors.
Gelman and Carlin (2014) argue that for small sample size settings, it is also
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Multiple Testing 191

important to calculate a) the probability of an estimate being in the
wrong direction (Type S [sign] error), and b) the factor by which the magni-
tude of an effect might be overestimated (Type M [magnitude] error or
exaggeration ratio).

Bias

In experiment results, bias arises when the estimate and the true value of the
mean are systematically different. It can be caused by a platform bug, a flawed
experiment design, or an unrepresentative sample such as company employee
or test accounts. We discuss several examples and recommendations for
prevention and detection in Chapter 3.

Multiple Testing

With hundreds of metrics computed for each experiment, we commonly hear
from experimenters “Why is this irrelevant metric significant?” Here is a
simplified way to look at it. If you compute 100 metrics for your experiment,
how many metrics would you see as statistically significant even if your
feature does nothing? With the significance level at 5%, the answer is around
five (assuming that the metrics are independent). The problem worsens when
examining hundreds of experiments and multiple iterations per experiment.
When testing multiple things in parallel, the number of false discoveries
increases. This is called the “multiple testing” problem.

How can we ensure that Type I and Type II errors are still reasonably
controlled under multiple testing? There are many well studied approaches;
however, most approaches are either simple but too conservative, or complex
and hence less accessible. For example, the popular Bonferroni correction,
which uses a consistent but much smaller p-value threshold (0.05 divided by
the number of tests), falls into the former category. The Benjamini-Hochberg
procedure (Hochberg and Benjamini 1995) uses varying p-value thresholds for
different tests and it falls into the latter category.

So, what should you do when a metric is unexpectedly significant? Here’s a
simple two-step rule-of-thumb:

1. Separate all metrics into three groups:
e First-order metrics: those you expect to be impacted by the experiment
e Second-order metrics: those potentially to be impacted (e.g., through
cannibalization)
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192 17 Statistics Behind Online Controlled Experiments

e Third-order metrics: those unlikely to be impacted.
2. Apply tiered significance levels to each group (e.g., 0.05, 0.01 and 0.001
respectively).

These rules-of-thumb are based on an interesting Bayesian interpretation: How
much do you believe the Null hypothesis (Hy) is true before you even run the
experiment? The stronger the belief, the lower the significance level you
should use.

Fisher’s Meta-analysis

We discuss how to identify patterns, create and utilize institutional memories
based on meta-analysis on historical experiments in Chapter 8. In this section,
we are particularly interested in combining results from multiple experiments
that test on the same hypothesis. For example, it is a common technique to
replicate an experiment that had surprising results. Replication is done using
either orthogonal randomization or users who were not allocated to the original
round of the experiment. These two experiments, the original and the replica-
tion, both produce p-values independent of each other. Intuitively, if both
p-values are less than 0.05, that’s stronger evidence that the Treatment has
an impact than if only one p-value is less than 0.05. Fisher formalizes this
intuition in his meta-analysis method (Fisher 1925), saying that we can
combine p-values from multiple independent statistical tests into one test
statistic as shown in Equation 17.9:

X3 =25 in(p) (17.9)

where p; is the p-value for the ith hypothesis test. If all kK Null hypothesis are
true, this test statistic follows a chi-squared distribution with 2k degrees of
freedom. Brown (1975) extends Fisher’s method to cases when the p-values
are not independent. There are other p-value combination methods, such as
Edgington (1972), Volumne 80 (2) and Mudholkar and George (1979). See
Hedges and Olkin (2014) for more discussions.

In general, Fisher’s method (or any other meta-analysis technique) is great
for increasing power and reducing false-positives. You may have an experi-
ment that is underpowered even after applying all power-increasing tech-
niques, such as maximum power traffic allocation (see Chapter 15) and
variance reduction (see Chapter 22). In this case, you can consider two or
more (orthogonal) replications of the same experiment (one after another) and
achieve higher power by combining the results using Fisher’s method.
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Variance Estimation and Improved Sensitivity:
Pitfalls and Solutions

With great power comes small effect size
— Unknown

Why you care: What is the point of running an experiment if you cannot
analyze it in a trustworthy way? Variance is the core of experiment analysis.
Almost all the key statistical concepts we have introduced are related to
variance, such as statistical significance, p-value, power, and confidence
interval. It is imperative to not only correctly estimate variance, but also to
understand how to achieve variance reduction to gain sensitivity of the statis-
tical hypothesis tests.

This chapter covers variance, which is the most critical element for comput-
ing p-values and confidence intervals. We primarily focus on two topics: the
common pitfalls (and solutions) in variance estimation and the techniques for
reducing variance that result in better sensitivity.

Let’s review the standard procedure for computing the variance of an average
metric, with i=1, ..., n independent identically distributed (i.i.d.) samples. In
most cases, i is a user, but it can also be a session, a page, a user day, and so on:

e Compute the metric (the average): ¥ = ﬁZ;’:lY i
e Compute the sample variance: var(Y) = 6> = -3 (Y, —Y )2

e Compute the variance of the average metric which is the sample variance
2

scaled by a factor of n: var(Y) = var(1 31 Y;) = Lknkvar(Y) =2

Common Pitfalls

If you incorrectly estimate the variance, then the p-value and confidence
interval will be incorrect, making your conclusions from the hypothesis test

193
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194 18 Variance Estimation and Improved Sensitivity

wrong. Overestimated variance leads to false negatives and underestimated
variance leads to false positives. Here are a few common pitfalls when it comes
to variance estimation.

Delta vs. Delta %

It is very common to use the relative difference instead of the absolute
difference when reporting results from an experiment. It is difficult to know
if 0.01 more sessions from an average user are a lot or how it compares with
the impact on other metrics. Decision makers usually understand the magni-
tude of a 1% session increase. The relative difference, called percent delta is
defined as:

A
A% == 18.1
%= (18.1)

To properly estimate the confidence interval on A%, we need to estimate
its variance. Variance for the delta is the sum of the variances of each

component:

var(A) = var (F — F) = var (7) + var(Y°) (18.2)
To estimate the variance of A%, a common mistake is to divide var(A) by Fz,
that is, @. This is incorrect because Y° itself is a random variable. The

<

correct way to estimate the variance is:

Y —Y° Y
var(A%) = var| —— | = var| =

18.3
7 7 (18.3)

We will discuss how to estimate the variance of the ratio in the section below.

Ratio Metrics. When Analysis Unit Is Different from
Experiment Unit

Many important metrics come from the ratio of two metrics. For example,
click-through rate (CTR) is usually defined as the ratio of total clicks to total
pageviews; revenue-per-click is defined as the ratio of total revenue to total
clicks. Unlike metrics such as clicks-per-user or revenue-per-user, when you
use a ratio of two metrics, the analysis unit is no longer a user, but a pageview
or click. When the experiment is randomized by the unit of a user, this can
create a challenge for estimating variance.

The variance formula var(Y) = 6* =L 3" (¥, — Y)? is so simple and
elegant that it’s easy to forget a critical assumption behind it: the samples
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Common Pitfalls 195

(Yy, ..., Y,) need to be i.i.d. (independently identically distributed) or at least
uncorrelated. This assumption is satisfied if the analysis unit is the same as the
experimental (randomization) unit. It is usually violated otherwise. For user-
level metrics, each Y; represents the measurement for a user. The analysis unit
matches the experiment unit and hence the i.i.d. assumption is valid. However,
for page-level metrics, each Y; represents a measurement for a page while the
experiment is randomized by user, so Yy, ¥, and Y3 could all be from the same
user and are “correlated.” Because of such “within user correlation,” variance
computed using the simple formula would be biased.

To correctly estimate the variance, you can write the ratio metric as the ratio
of “average of user level metrics,” (see Equation 18.4)

M= (18.4)

~<|| >

Because X and Y are jointly bivariate normal in the limit, M, as the ratio of the
two averages, is also normally distributed. Therefore, by the delta method we
can estimate the variance as (Deng et al. 2017) (see Equation 18.5):

1 o X2 X o
var(M) = ?var(X) += 74 var(Y) —2 7 cov(X,Y). (18.5)

In the case of A%, Y’ and Y° are independent, hence (see Equation 18.6)

1 _ t
var(A%) = —var(Y" ) + var(Y°¢ (18.6)
(%) = —svar(Y7) + —var (7).

Note that when the Treatment and Control means differ significantly, this is
substantially different from the incorrect estimate of M.

Note that there are metrics that cannot be written in the form of the ratio of
two user-level metrics, for example, 90th percentile of page load time. For
these metrics, we may need to resort to bootstrap method (Efron and Tibshriani
1994) where you simulate randomization by sampling with replacement and
estimate the variance from many repeated simulations. Even though bootstrap
is computationally expensive, it is a powerful technique, broadly applicable,
and a good complement to the delta method.

Outliers

Outliers come in various forms. The most common are those introduced by
bots or spam behaviors clicking or performing many pageviews. Outliers have
a big impact on both the mean and variance. In statistical testing, the impact on
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Figure 18.1 In the simulation, as we increase the size of the (single) outlier, the
two-sample test goes from being very significant to not significant at all

the variance tends to outweigh the impact on the mean, as we demonstrate
using the following simulation.

In the simulation, the Treatment has a positive true delta against Control.
We add a single, positive outlier to the Treatment group. The size of the outlier
is a multiple of the size of the delta. As we vary the multiplier (the relative
size), we notice that while the outlier increases the average of the Treatment, it
increases the variance (or the standard deviation) even more. As a result, you
can see in Figure 18.1 that the t-statistic decreases as the relative size of the
outlier increases and eventually the test is no longer statistically significant.

It is critical to remove outliers when estimating variance. A practical and
effective method is to simply cap observations at a reasonable threshold. For
example, human users are unlikely to perform a search over 500 times or have
over 1,000 pageviews in one day. There are many other outlier removal
techniques as well (Hodge and Austin 2004).

Improving Sensitivity

When running a controlled experiment, we want to detect the Treatment effect
when it exists. This detection ability is generally referred to as power or
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sensitivity. One way to improve sensitivity is reducing variance. Here are some
of the many ways to achieve a smaller variance:

e Create an evaluation metric with a smaller variance while capturing similar
information. For example, the number of searches has a higher variance
than the number of searchers; purchase amount (real valued) has higher
variance than purchase (Boolean). Kohavi et al. (2009) gives a concrete
example where using conversion rate instead of purchasing spend reduced
the sample size needed by a factor of 3.3.

e Transform a metric through capping, binarization, or log transformation.
For example, instead of using average streaming hour, Netflix uses binary
metrics to indicate whether the user streamed more than X hours in a
specified time period (Xie and Aurisset 2016). For heavy long-tailed
metrics, consider log transformation, especially if interpretability is not a
concern. However, there are some metrics, such as revenue, where a log-
transformed version may not be the right goal to optimize for the business.

e Use triggered analysis (see Chapter 20). This is a great way to remove noise
introduced by people not affected by the Treatment.

e Use stratification, Control-variates or CUPED (Deng et al. 2013). In strati-
fication, you divide the sampling region into strata, sample within each
stratum separately, and then combine results from individual strata for the
overall estimate, which usually has smaller variance than estimating without
stratification. The common strata include platforms (desktop and mobile),
browser types (Chrome, Firefox and Edge) and day of week and so on.
While stratification is most commonly conducted during the sampling phase
(at runtime), it is usually expensive to implement at large scale. Therefore,
most applications use post-stratification, which applies stratification retro-
spectively during the analysis phase. When the sample size is large, this
performs like stratified sampling, though it may not reduce variance as well
if the sample size is small and variability among samples is big. Control-
variates is based on a similar idea, but it uses covariates as regression
variables instead of using them to construct the strata. CUPED is an
application of these techniques for online experiments, that emphasizes
utilization of pre-experiment data (Soriano 2017, Xie and Aurisset 2016,
Jackson 2018, Deb et al. 2018). Xie and Aurisset (2016) compare the
performance of stratification, post-stratification, and CUPED on Netflix
experiments.

e Randomize at a more granular unit. For example, if you care about the page
load time metric, you can substantially increase sample size by randomizing
per page. You can also randomize per search query to reduce variance if
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you’re looking at per query metrics. Note that there are disadvantages with a

randomization unit smaller than a user:

o If the experiment is about making a noticeable change to the Ul, giving
the same user inconsistent Uls makes it a bad user experience.

o It is impossible to measure any user-level impact over time (e.g. user
retention).

e Design a paired experiment. If you can show the same user both Treatment
and Control in a paired design, you can remove between-user variability and
achieve a smaller variance. One popular method for evaluating ranked lists
is the interleaving design, where you interleave two ranked lists and present
the joint list to user at the same time (Chapelle et al. 2012, Radlinski and
Craswell 2013).

e Pool Control groups. If you have several experiments splitting traffic and
each has their own Control, consider pooling the separate controls to form a
larger, shared Control group. Comparing each Treatment with this shared
Control group increases the power for all experiments involved. If you
know the sizes of all Treatments you’re comparing the Control group with,
you can mathematically derive the optimal size for the shared Control. Here
are considerations for implementing this in practice:

o If each experiment has its own trigger condition, it may be hard to
instrument them all on the same Control.

° You may want to compare Treatments against each other directly. How
much does statistical power matter in such comparisons relative to testing
against the Control?

o There are benefits of having the same sized Treatment and Control in the
comparison, even though the pooled Control is more than likely bigger
than the Treatment groups. Balanced variants lead to a faster normality
convergence (see Chapter 17) and less potential concern about cache sizes
(depending on how you cache implementation).

Variance of Other Statistics

In most discussions in the book, we assume that the statistic of interest is the
mean. What if you’re interested in other statistics, such as quantiles? When it
comes to time-based metrics, such as page-load-time (PLT), it is common to
use quantiles, not the mean, to measure site-speed performance. For instance,
the 90th or 95th percentiles usually measure user engagement-related
load times, while the 99th percentile is more often server-side latency
measurements.
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While you can always resort to bootstrap for conducting the statistical test
by finding the tail probabilities, it gets expensive computationally as data size
grows. On the other hand, if the statistic follows a normal distribution asymp-
totically, you can estimate variance cheaply. For example, the asymptotic
variance for quantile metrics is a function of the density (Lehmann and
Romano 2005). By estimating density, you can estimate variance.

There is another layer of complication. Most time-based metrics are at the
event/page level, while the experiment is randomized at user level. In this case,
apply a combination of density estimation and the delta method (Liu et al.
2018).
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